452 research outputs found
Road School: ADA and Title VI: Remaining Eligible for Funding
Compliance with nondiscrimination and accessibility requirements is a contractual and ethical obligation for subrecipients of federal funds. Come learn how to achieve compliance with State and Federal regulations to remain eligible for federal funds, , avoid legal liability and better serve your community by ensuring projects and programs developed with public funds are deigned to benefit all
Doing Business with INDOT: A Comprehensive Guide for Indiana Communities
There is a lot to know to coordinate a project or apply for a grant with INDOT: state and federal regulations, training requirements, contracts to sign, websites to check, e-mail lists to join. This year, INDOT aims to simplify this information and present a road map for doing business with us. You will leave this presentation confident that you know what you need to know if you plan to work with us or apply for project funding
Access Equity: Driving Indiana Infrastructure and Communities to the Next Level
For over 25 years the American’s with Disabilities Act has required communities to plan for and transition their infrastructure and programs to become accessible. However, many communities still have a long way to go. This presentation takes compliance to the next level and engages community partners in the discussion of what access equity looks like and why it has to be the goal of a solid ADA transition plan
How Image-Based Social Media Websites Support Social Movements
The Internet has disrupted the traditional progression of social movements. We explore common characteristics of image-based activism on Instagram by qualitatively analyzing 300 Instagram posts from three social movements: Black Lives Matter, the battle against defunding Planned Parenthood, and the backlash against the Indiana Religious Freedom Restoration Act. We found that common types of images emerged among the three social movements, indicating a possible underlying pattern in social movement content posted on Instagram. Users also engage in workarounds to leverage Instagram toward a collective goal, going beyond the features offered by the platform to communicate their message. These findings have implications for future work studying social movement theories online
Metabolism, Gas Exchange, and Carbon Spiraling in Rivers
Ecosystem metabolism, that is, gross primary productivity (GPP) and ecosystem respiration (ER), controls organic carbon (OC) cycling in stream and river networks and is expected to vary predictably with network position. However, estimates of metabolism in small streams outnumber those from rivers such that there are limited empirical data comparing metabolism across a range of stream and river sizes. We measured metabolism in 14 rivers (discharge range 14–84 m3 s−1) in the Western and Midwestern United States (US). We estimated GPP, ER, and gas exchange rates using a Lagrangian, 2-station oxygen model solved in a Bayesian framework. GPP ranged from 0.6–22 g O2 m−2 d−1 and ER tracked GPP, suggesting that autotrophic production supports much of riverine ER in summer. Net ecosystem production, the balance between GPP and ER was 0 or greater in 4 rivers showing autotrophy on that day. River velocity and slope predicted gas exchange estimates from these 14 rivers in agreement with empirical models. Carbon turnover lengths (that is, the distance traveled before OC is mineralized to CO2) ranged from 38 to 1190 km, with the longest turnover lengths in high-sediment, arid-land rivers. We also compared estimated turnover lengths with the relative length of the river segment between major tributaries or lakes; the mean ratio of carbon turnover length to river length was 1.6, demonstrating that rivers can mineralize much of the OC load along their length at baseflow. Carbon mineralization velocities ranged from 0.05 to 0.81 m d−1, and were not different than measurements from small streams. Given high GPP relative to ER, combined with generally short OC spiraling lengths, rivers can be highly reactive with regard to OC cycling. © 2015, Springer Science+Business Media New York
Reduction in overt and silent stroke recurrence rate following cerebral revascularization surgery in children with sickle cell disease and severe cerebral vasculopathy
Background
Children with sickle cell disease (SCD) and moyamoya may benefit from indirect cerebral revascularization surgery in addition to chronic blood transfusion therapy for infarct prevention. We sought to compare overt and silent infarct recurrence rates in children with SCD undergoing revascularization.
Methods
This was a retrospective cohort study of all children with SCD and moyamoya treated at two children’s hospitals. Clinical events and imaging studies were reviewed.
Results
Twenty-seven children with SCD and confirmed moyamoya receiving chronic transfusion therapy were identified, of whom 12 underwent indirect cerebral revascularization. Two subjects had post-operative transient ischemic attacks and another had a subarachnoid blood collection, none of which caused permanent consequences. Two subjects had surgical wound infections. Among these 12 children, the rate of overt and silent infarct recurrence decreased from 13.4 infarcts/100 patient-years before revascularization to 0 infarcts/100 patient-years after revascularization (p=0.0057); the post-revascularization infarct recurrence rate was also significantly lower than the overall infarct recurrence of 8.87 infarcts/100 patient-years in 15 children without cerebral revascularization (p=0.025).
Conclusion
The rate of overt and silent infarct recurrence was significantly lower following indirect cerebral revascularization. A prospective study of cerebral revascularization in children with SCD is needed
The Sloan Digital Sky Survey Quasar Lens Search. II. Statistical lens sample from the third data release
We report the first results of our systematic search for strongly lensed quasars using the spectroscopically confirmed quasars in the Sloan Digital Sky Survey (SDSS). Among 46,420 quasars from the SDSS Data Release 3 (~4188 deg^2), we select a subsample of 22,683 quasars that are located at redshifts between 0.6 and 2.2 and are brighter than the Galactic extinction-corrected i-band magnitude of 19.1. We identify 220 lens candidates from the quasar subsample, for which we conduct extensive and systematic follow-up observations in optical and near-infrared wavebands, in order to construct a complete lensed quasar sample at image separations between 1" and 20" and flux ratios of faint to bright lensed images larger than 10^(−0.5). We construct a statistical sample of 11 lensed quasars. Ten of these are galaxy-scale lenses with small image separations (~ 1"-2") and one is a large separation (15") system which is produced by a massive cluster of galaxies, representing the first statistical sample of lensed quasars including both galaxy- and cluster-scale lenses. The Data Release 3 spectroscopic quasars contain an additional 11 lensed quasars outside the statistical sample
The Precision Array for Probing the Epoch of Reionization: 8 Station Results
We are developing the Precision Array for Probing the Epoch of Reionization
(PAPER) to detect 21cm emission from the early Universe, when the first stars
and galaxies were forming. We describe the overall experiment strategy and
architecture and summarize two PAPER deployments: a 4-antenna array in the
low-RFI environment of Western Australia and an 8-antenna array at our
prototyping site in Green Bank, WV. From these activities we report on system
performance, including primary beam model verification, dependence of system
gain on ambient temperature, measurements of receiver and overall system
temperatures, and characterization of the RFI environment at each deployment
site.
We present an all-sky map synthesized between 139 MHz and 174 MHz using data
from both arrays that reaches down to 80 mJy (4.9 K, for a beam size of 2.15e-5
steradians at 154 MHz), with a 10 mJy (620 mK) thermal noise level that
indicates what would be achievable with better foreground subtraction. We
calculate angular power spectra () in a cold patch and determine them
to be dominated by point sources, but with contributions from galactic
synchrotron emission at lower radio frequencies and angular wavemodes. Although
the cosmic variance of foregrounds dominates errors in these power spectra, we
measure a thermal noise level of 310 mK at for a 1.46-MHz band
centered at 164.5 MHz. This sensitivity level is approximately three orders of
magnitude in temperature above the level of the fluctuations in 21cm emission
associated with reionization.Comment: 13 pages, 14 figures, submitted to AJ. Revision 2 corrects a scaling
error in the x axis of Fig. 12 that lowers the calculated power spectrum
temperatur
Accurate and Rapid Identification of the Burkholderia pseudomallei Near-Neighbour, Burkholderia ubonensis, Using Real-Time PCR
Burkholderia ubonensis is an environmental bacterium belonging to the Burkholderia cepacia complex (Bcc), a group of genetically related organisms that are associated with opportunistic but generally nonfatal infections in healthy individuals. In contrast, the near-neighbour species Burkholderia pseudomallei causes melioidosis, a disease that can be fatal in up to 95% of cases if left untreated. B. ubonensis is frequently misidentified as B. pseudomallei from soil samples using selective culturing on Ashdown’s medium, reflecting both the shared environmental niche and morphological similarities of these species. Additionally, B. ubonensis shows potential as an important biocontrol agent in B. pseudomallei-endemic regions as certain strains possess antagonistic properties towards B. pseudomallei. Current methods for characterising B. ubonensis are laborious, time-consuming and costly, and as such this bacterium remains poorly studied. The aim of our study was to develop a rapid and inexpensive real-time PCR-based assay specific for B. ubonensis. We demonstrate that a novel B. ubonensis-specific assay, Bu550, accurately differentiates B. ubonensis from B. pseudomallei and other species that grow on selective Ashdown’s agar. We anticipate that Bu550 will catalyse research on B. ubonensis by enabling rapid identification of this organism from Ashdown’s-positive colonies that are not B. pseudomallei
- …