14,807 research outputs found

    A sophisticated, multi-channel data acquisition and processing system for high frequency noise research

    Get PDF
    A sophisticated, multi-channel computerized data acquisition and processing system was developed at the NASA LeRC for use in noise experiments. This technology, which is available for transfer to industry, provides a convenient, cost-effective alternative to analog tape recording for high frequency acoustic measurements. This system provides 32-channel acquisition of microphone signals with an analysis bandwidth up to 100 kHz per channel. Cost was minimized through the use of off-the-shelf components. Requirements to allow for future expansion were met by choosing equipment which adheres to established industry standards for hardware and software. Data processing capabilities include narrow band and 1/3 octave spectral analysis, compensation for microphone frequency response/directivity, and correction of acoustic data to standard day conditions. The system was used successfully in a major wind tunnel test program at NASA LeRC to acquire and analyze jet noise data in support of the High Speed Civil Transport (HSCT) program

    Acoustic Mode Measurements in the Inlet of a Model Turbofan Using a Continuously Rotating Rake

    Get PDF
    Comprehensive measurements of the spinning acoustic mode structure in the inlet of the Advanced Ducted Propeller (ADP) have been completed. These measurements were taken using a unique and previously untried method which was first proposed by T.G. Sofrin. A continuously rotating microphone system was employed. The ADP model was designed and built by Pratt & Whitney and tested in the NASA Lewis 9- by 15-foot Anechoic Wind Tunnel. Three inlet configurations were tested with cut-on and cutoff stator vane sets. The cutoff stator was designed to suppress all modes at the blade passing frequency. Rotating rake measurements indicate that several extraneous circumferential modes were active. The mode orders suggest that their source was an interaction between the rotor and small interruptions in the casing tip treatment. The cut-on stator produced the expected circumferential modes plus higher levels of the unexpected modes seen with the cutoff stator

    The effect of swirl recovery vanes on the cruise noise of an advanced propeller

    Get PDF
    The SR-7A propeller was acoustically tested with and without downstream swirl recovery vanes to determine if any extra noise was caused by the interaction of the propeller wakes and vortices with these vanes. No additional noise was observed at the cruise condition over the angular range tested. The presence of the swirl recovery vanes did unload the propeller and some small peak noise reductions were observed from lower propeller loading noise. The propeller was also tested alone to investigate the behavior of the peak propeller noise with helical tip Mach number. As observed before on other propellers, the peak noise first rose with helical tip Mach number and then leveled off or decreased at higher helical tip Mach numbers. Detailed pressure-time histories indicate that a portion of the primary pressure pulse is progressively cancelled by a secondary pulse as the helical tip Mach number is increased. This cancellation appears to be responsible for the peak noise behavior at high helical tip Mach numbers

    Detailed noise measurements on the SR-7A propeller: Tone behavior with helical tip Mach number

    Get PDF
    Detailed noise measurements were taken on the SR-7A propeller to investigate the behavior of the noise with helical tip Mach number and then to level off as Mach number was increased further. This behavior was further investigated by obtaining detailed pressure-time histories of data. The pressure-time histories indicate that a portion of the primary pressure pulse is progressively cancelled by a secondary pulse which results in the noise leveling off as the helical tip Mach number is increased. This second pulse appears to originate on the same blade as the primary pulse and is in some way connected to the blade itself. This leaves open the possibility of redesigning the blade to improve the cancellation; thereby, the propeller noise is reduced

    Acoustic mode measurements in the inlet of a model turbofan using a continuously rotating rake: Data collection/analysis techniques

    Get PDF
    The rotating microphone measurement technique and data analysis procedures are documented which are used to determine circumferential and radial acoustic mode content in the inlet of the Advanced Ducted Propeller (ADP) model. Circumferential acoustic mode levels were measured at a series of radial locations using the Doppler frequency shift produced by a rotating inlet microphone probe. Radial mode content was then computed using a least squares curve fit with the measured radial distribution for each circumferential mode. The rotating microphone technique is superior to fixed-probe techniques because it results in minimal interference with the acoustic modes generated by rotor-stator interaction. This effort represents the first experimental implementation of a measuring technique developed by T. G. Sofrin. Testing was performed in the NASA Lewis Low Speed Anechoic Wind Tunnel at a simulated takeoff condition of Mach 0.2. The design is included of the data analysis software and the performance of the rotating rake apparatus. The effect of experiment errors is also discussed

    Volck oil, special emulsion number two, as an animal insecticide

    Get PDF
    Typescript, etc.Digitized by Kansas State University Librarie

    Grid-connected renewables, storage and the UK electricity market

    Get PDF
    This article is a critical counterpoint to an article by published by Swift-Hook in the journal of Renewable Energy entitled "Grid-connected intermittent renewables are the last to be stored". In contrast to Swift-Hook we found evidence that "grid-connected intermittent renewables" have been, and will continue to be stored when it suits the "UK market" to do so.  This article is important to policy makers as energy storage (through EV battery demand side management for example) may well have an important role to play in facilitating the integration of high wind penetrations

    Takeoff/approach noise for a model counterrotation propeller with a forward-swept upstream rotor

    Get PDF
    A scale model of a counterrotating propeller with forward-swept blades in the forward rotor and aft-swept blades in the aft rotor (designated F39/A31) has been tested in the NASA Lewis 9- by 15-Foot Anechoic Wind Tunnel. This paper presents aeroacoustic results at a takeoff/approach condition of Mach 0.20. Laser Doppler velocimeter results taken in a plane between the two rotors are also included to quantify the interaction flow field. The intention of the forward-swept design is to reduce the magnitude of the forward rotor tip vortex and/or wakes which impinge on the aft rotor, thus lowering the interaction tone levels. A reference model propeller (designated F31/A31), having aft-swept blades in both rotors, was also tested. Aeroelastic performance of the F39/A31 propeller was disappointing. The forward rotor tip region tended to untwist toward higher effective blade angles under load. The forward rotor also exhibited steady state blade flutter at speeds and loadings well below the design condition. The noise results, based on sideline acoustic data, show that the interaction tone levels were up to 8 dB higher with the forward-swept design compared to those for the reference propeller at similar operating conditions, with these tone level differences extending down to lower propeller speeds where flutter did not occur. These acoustic results are for a poorly-performing forward-swept propeller. It is quite possible that a properly-designed forward-swept propeller would exhibit substantial interaction tone level reductions

    Symmetry properties of one- and two- electron molecular integrals

    Get PDF
    The maximum numbers of distinct one- and two-electron integrals that arise in calculating the electronic energy of a molecule are discussed. It is shown that these may be calculated easily using the character table of the symmetry group of the set of basis functions used to express the wave function. Complications arising from complex group representations and from a conflict of symmetry between the basis set and the nuclear configuration are considered and illustrated by examples
    corecore