10 research outputs found

    Corrigendum to “How do biases in sex ratio and disease characteristics affect the spread of sexually transmitted infections?” [J. Theor. Biol. 527 (2021) 110832]

    Get PDF
    The authors regret that there were errors in equations (12)–(15) on page 3 for the endemic equilibrium. Equations (12)–(15) should be replaced by [Formula presented] [Formula presented] [Formula presented] [Formula presented]where [Formula presented] The results shown in the paper were calculated with the correct equations above. The authors would like to apologise for any inconvenience caused.</p

    Mortality cost of sex-specific parasitism in wild bird populations

    Get PDF

    Seasonal variation in sex-specific immunity in wild birds

    Get PDF
    Whilst the immune system often varies seasonally and exhibits differences between males and females, the general patterns in seasonality and sex differences across taxa have remained controversial. Birds are excellent model organisms to assess these patterns, because the immune system of many species is well characterised. We conducted a meta-analysis using 41 wild bird species from 24 avian families to investigate sex differences and seasonal (breeding/non-breeding) variations in immune status, including white blood cell counts, phytohaemagglutinin (PHA) test, bacteria-killing ability (BKA), haemolysis and haemagglutination assays. We found male-biased macrophage concentration, BKA and haemolysis titers, but only during the breeding season. Sexspecific heterophil concentrations, heterophil/lymphocyte ratios and PHA responses differed between breeding and non-breeding, suggesting larger changes in males than in females. Importantly, sex differences in immune status are stronger during the breeding period than during the non-breeding period. Taken together, our study suggests that both seasonal variation and sex differences in immune system are common in birds, although their associations are more complex than previously thoughtPeer reviewe

    Association of insularity and body condition to cloacal bacteria prevalence in a small shorebird

    Get PDF
    Do islands harbour less diverse disease communities than mainland? The island biogeography theory predicts more diverse communities on mainland than on islands due to more niches, more diverse habitats and availability of greater range of hosts. We compared bacteria prevalences ofCampylobacter,ChlamydiaandSalmonellain cloacal samples of a small shorebird, the Kentish plover (Charadrius alexandrinus) between two island populations of Macaronesia and two mainland locations in the Iberian Peninsula. Bacteria were found in all populations but, contrary to the expectations, prevalences did not differ between islands and mainland. Females had higher prevalences than males forSalmonellaand when three bacteria genera were pooled together. Bacteria infection was unrelated to bird's body condition but females from mainland were heavier than males and birds from mainland were heavier than those from islands. Abiotic variables consistent throughout breeding sites, like high salinity that is known to inhibit bacteria growth, could explain the lack of differences in the bacteria prevalence between areas. We argue about the possible drivers and implications of sex differences in bacteria prevalence in Kentish plovers

    Mortality cost of sex-specific parasitism in wild bird populations

    Get PDF
    Sex-specific mortality is frequent in animals although the causes of different male versus female mortalities remain poorly understood. Parasitism is ubiquitous in nature with widespread detrimental effects to hosts, making parasitism a likely cause of sex-specific mortalities. Using sex-specific blood and gastrointestinal parasite prevalence from 96 and 54 avian host species, respectively, we test the implications of parasites for annual mortality in wild bird populations using phylogenetic comparative methods. First, we show that parasite prevalence is not different between adult males and females, although Nematodes showed a statistically significant but small male-biased parasite prevalence. Second, we found no correlation between sex-biased host mortalities and sex-biased parasite prevalence. These results were consistent in both blood and gastrointestinal parasites. Taken together, our results show little evidence for sex-dependent parasite prevalence in adults in wild bird populations, and suggest that parasite prevalence is an unlikely predictor of sex difference in adult mortalities, not withstanding sampling limitations. We propose that to understand causes of sex-biased mortalities, more complex analyses are needed that incorporate various ecological and life history components of animals life that may include sex differences in exposure to predators, immune capacity and cost of reproduction

    Seasonal variation in sex‑specific immunity in wild birds

    No full text
    Here you will find the dataset, trees and R scripts used for the study Valdebenito et al. Seasonal variation in sex‑specific immunity in wild birds

    The allocation between egg size and clutch size depends on local nest survival rate in a mean of bet-hedging in a shorebird

    No full text
    Abstract Background The allocation of resources between offspring size and number is a central question of life-history theory. Although several studies have tested the existence of this trade-off, few studies have investigated how environmental variation influences the allocation of resources to offspring size and offspring number. Additionally, the relationship between population dynamics and the offspring size and number allocation is far less understood. Methods We investigate whether resource allocation between egg size and clutch size is influenced by the ambient temperature and whether it may be related to apparent nest survival rate. We measured 1548 eggs from 541 nests of two closely related shorebird species, the Kentish Plover (Charadrius alexandrinus) and the White-faced Plover (C. dealbatus) in China, in four populations that exhibit contrasting ambient environments. We weighed females, monitored nest survival, and calculated the variance of ambient temperature. Results Although we found that egg size and clutch size were all different between the four breeding populations, the reproductive investment (i.e. total clutch volume) was similar between populations. We also found that populations with a high survival rate had relatively larger eggs and a smaller clutch than populations with a low nest survival rate. The latter result is in line with a conservative/diversified bet-hedging strategy. Conclusions Our findings suggest that plovers may increasing fitness by investing fewer, larger or many, small according local nest survival rate to make a similar investment in reproduction, and thereby may have an impact on population demography
    corecore