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Seasonal variation in sex‑specific 
immunity in wild birds
José O. Valdebenito1*, Naerhulan Halimubieke1, Ádám Z. Lendvai2, Jordi Figuerola3,4, 
Götz Eichhorn5,6 & Tamás Székely1,2

Whilst the immune system often varies seasonally and exhibits differences between males and 
females, the general patterns in seasonality and sex differences across taxa have remained 
controversial. Birds are excellent model organisms to assess these patterns, because the immune 
system of many species is well characterised. We conducted a meta-analysis using 41 wild bird 
species from 24 avian families to investigate sex differences and seasonal (breeding/non-breeding) 
variations in immune status, including white blood cell counts, phytohaemagglutinin (PHA) test, 
bacteria-killing ability (BKA), haemolysis and haemagglutination assays. We found male-biased 
macrophage concentration, BKA and haemolysis titers, but only during the breeding season. Sex-
specific heterophil concentrations, heterophil/lymphocyte ratios and PHA responses differed between 
breeding and non-breeding, suggesting larger changes in males than in females. Importantly, sex 
differences in immune status are stronger during the breeding period than during the non-breeding 
period. Taken together, our study suggests that both seasonal variation and sex differences in immune 
system are common in birds, although their associations are more complex than previously thought.

To thwart pathogens and keep infections at bay hosts rely on a competent immune system1. While the relation-
ship between immune function and individual survival has been well documented2–4, there has been relatively 
little research focused on sex differences in immune defence in free-living animals.

Differences in immune response between the sexes have been described extensively across vertebrates. These 
sex differences have been traditionally associated with the immunomodulating effect of sex hormones, where 
oestrogens, found in higher concentrations in females, act as weak immune-enhancers, and androgens, higher 
in males, as immune-suppressors5,6. However, these studies have been centred primarily on humans and labora-
tory animals, while there is increasing evidence suggesting that the association between sex hormones and sex 
differences in immunity in the wild are not as simple as first thought. Two independent meta-analysis showed 
that testosterone did not have a consistent overall immunosuppressive effect in males, and the effect depended 
on the taxa studied and whether the experimental manipulations involved hormone concentrations above physi-
ological levels7,8. A recent study has also challenged the notion of sex biases in immunity by finding no overall 
sex difference in immune estimates in a large-scale comparative analysis including vertebrates and invertebrates9. 
However, Kelly et al.9 showed that some patterns do arise when focusing on specific immune variables and 
taxonomic groups, such as mammals, which showed a strong male bias in specific pro-inflammatory cytokines. 
Kelly et al.9 did not find overall sexual differences in birds immunity, but they concluded that future studies of 
sex differences in immunity should include variables known to affect immune functioning, such as age10, nutri-
tional state11, photoperiod12 or seasonality13. The latter variable is especially relevant, because seasonal changes, 
in particular the transition between the non-breeding and the breeding period, involve major physiological 
and behavioural changes. They may also include pronounced environmental shifts, particularly in species that 
migrate between breeding and non-breeding grounds, which is the case in many species of birds. Accordingly, 
several studies have found important sex-specific changes in immunity between the non-breeding and breed-
ing period in birds. For example, Hõrak et al.14 found that female Great Tits, Parus major, had more circulating 
lymphocytes than males in spring but not in summer. Merrill et al.15 found that male Brown-headed Cowbirds, 
Molothrus ater, showed higher bactericidal capacity than females during the breeding period compared to the 
non-breeding period. Reasons behind such complex seasonal, species-specific and sex-specific immunity are not 
fully understood. Recurring explanations include sex-specific energetic and nutritional costs that may be traded 
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off against immunity16–18, thus resulting in an impaired immunity in the sex with higher energy expenditure (e.g. 
courtship displays, egg production, parental care19–21).

Alternatively, immune defence may be compromised in situations that cause strain or tension, i.e. stress22. 
Corticosterone, the main circulating glucocorticoid in birds, could play an important role here. First, because 
corticosterone is involved in regulating the metabolism23, and second, as result of an increase in stress-induced 
corticosterone production (e.g. during territory defence) that could supress immune function24–26. However, a 
comprehensive analysis that simultaneously investigates seasonally-related and sex-specific immunity across bird 
species is largely lacking. Also, it is unknown whether potential sex-specific or seasonal patterns are consistent 
between immune parameters27.

Here, in order to better understand the variation in avian immune function, we conducted a meta-analysis 
to test for seasonal (breeding versus non-breeding season) and sexual differences in immunity across bird spe-
cies. Because of the known effects of ontogeny and captivity on immunity28,29, we restricted our analysis to data 
from free-living adult birds. We included information from nine measurements characterising immune status: 
the relative frequency of four types of white blood cells (heterophils, lymphocytes, macrophages, eosinophils), 
the ratio of heterophils/lymphocytes (H/L ratio, a glucocorticoid-mediated immune index of stress), and four 
widely used immune response indexes (the phytohaemagglutinin test, bacteria-killing ability assay, haemolysis 
assay, and the haemagglutination assay). For each of these nine immune parameters we estimated their overall 
meta-analytic means (i.e. estimates of sex-specific immune biases). Based on previous studies9,30, we expected 
no sex difference in white blood cells levels and a small female bias in the immune response indexes. Next, we 
broke down these overall estimates by season, and computed one estimate for the non-breeding period and one 
for the breeding period. This allowed us to test if these seasonal estimates were sex-biased, and if season, as a 
variable, had a significant effect on the immune parameters. Because breeding often incurs increased workload 
and higher energy demands compared to non-breeding birds in winter16, we expected the two periods to differ 
from each other, and season to significantly affect immune variables31,32.

Furthermore, we used the estimates from male and female individuals to test if the sexes could respond 
differently to the transition between seasons. Males are generally more involved in courting behaviour and 
intrasexual aggression; therefore, we predicted a possible stress-mediated immunosuppression26 in males that 
could outweigh an alternative immunosuppression due to energetic trade-offs in females21. Thus, in the transi-
tion from non-breeding to breeding, males may exhibit stronger changes in immune estimates than females.

Materials and methods
Literature search.  We systematically collected sex-specific white blood cells and immune response data 
from birds (PRISMA method33) using ISI Web of Science (see chart in Fig. S1; list of references in supplemen-
tary material). Our inclusion criteria required these data to be: (1) determined from adult birds with known sex, 
(2) obtained from free-living wild birds (not captive), and (3) from populations that were not experimentally 
manipulated. In order to conduct the meta-analytic calculations, the selected studies should provide the number 
of individuals examined per sex, the arithmetic mean of the immune variable measured and an estimate of its 
variance. We only included publications reporting results for both sexes to avoid difficulties generated by differ-
ent sampling/diagnostic methods or different populations when calculating individual effect sizes.

Immune variables.  White blood cells (WBC).  We used data on the four most abundant WBC circulating 
in avian blood34: heterophils, lymphocytes, macrophages (also known as monocytes), and eosinophils. Baso-
phils counts were discarded because of insufficient data available. The H/L ratio was also collected or calculated 
using the raw values of heterophils and lymphocytes. Elevated leucocyte number is a symptom of a stress syn-
drome, inflammatory processes and/or oxidative stress35. Usually, leucocytosis is caused by an elevated con-
centration of heterophils and/or lymphocytes36,37. Lymphocytes are immune cells that assist in the recognition 
and destruction of many types of pathogens. Although sometimes difficult to interpret, decreased lymphocyte 
concentrations may signal stress-induced immunosuppression38, or may indicate a lack of parasite infections39. 
Heterophils are non-specific phagocytic cells that enter the tissues during inflammatory processes. Heterophil 
concentrations increase as a response to inflammatory processes, stress and infections37. Thus, the ratio of these 
two cell lines is considered a reliable proxy of physiological stress in birds35,40. Macrophages and eosinophils are 
less abundant in the avian blood than lymphocytes and heterophils. Their main function is to phagocytise and 
present antigens to T lymphocytes (T-cells), and to mediate the defence against parasite infections. Variation in 
their levels is commonly associated with pathogen infection34. WBC data came from apparently healthy animals 
(i.e. with no obvious signs of disease detected during handling), therefore assumed to represent baseline levels. 
The time between capture and sampling was not always available (details in Table S1), and Davis41 showed that 
within one hour of capture the total leucocyte counts decreased as a result of handling stress, whereas propor-
tions of each leucocyte type did not differ significantly. Therefore, we calculated WBC proportions (from the 
total number of leucocytes) to reduce between-study variation.

Estimates of immune response.  We used four widely accepted measures of immune response in birds: the (1) 
phytohaemagglutinin test (PHA), that consists of a subcutaneous injection of this mitogen (phytohaemaggluti-
nin) that triggers a local immune response mediated mostly by T-cell infiltration. Components of the innate and 
adaptive immune system take part in the response, which is estimated by measuring the degree of swelling of the 
skin, usually 24 h post-injection42. The (2) bacteria-killing ability assay (BKA) quantifies the ability of proteins 
in the plasma (such as complement, natural antibodies, and lysozymes) and/or phagocytic cells to kill bacteria43. 
The (3) haemolysis and (4) haemagglutination assays use foreign red blood cells (usually rabbit) to quantify titres 
of complement-like lytic enzymes (i.e. lysis, HL) and non-specific natural antibodies (i.e. agglutination, HA) in 
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plasma44. From each study we recorded whether the study was done during the breeding or the non-breeding 
season (hereafter season). Details of the breeding status extracted from each study are presented in Tables S1 
and S2.

We used standard deviation (SD) as estimate of variance. When standard error was provided, we calculated 
SD using Eq. (1):

where SE is the standard error, and n is the sample size.
When 95% confidence intervals were given (in two studies), SD was calculated with Eq. (2):

where n is the sample size, CI the confident intervals, and δ is the value for the t-distribution with degrees of 
freedom equal to the sample size minus 1 and a probability of 0.0545.

Statistical analysis.  Phylogenetic meta‑analysis.  To investigate sex biases in immunity, a phylogenetic 
multilevel meta-analysis was performed using the R package ‘metafor’46. Effect sizes were computed using 
Hedge’s g for standardised means because of its common use in ecology literature and for including a correction 
for small sample sizes47,48. Effect sizes are the standardised mean difference between two groups, which in our 
case corresponded to the mean of males relative to the female mean. Negative values of g indicate a female bias 
in the immune parameter studied and positive values a male bias. We conducted multilevel random-effect meta-
analyses using the previously computed effect sizes as response variable and season (non-breeding/breeding) as 
moderator (i.e. fixed-effect). Phylogeny (a variance–covariance matrix) and study (to account for more than one 
species and/or immune estimate per study) were added as random-effect variables. We used the avian phylogeny 
proposed by Jetz et al.49 and the analyses were conducted using consensus trees (one for each type of immune 
variable, Fig. S2) obtained by 50% majority-rule50,51 from 1000 randomly selected trees from a pool of 10,000 
available trees (http://birdt​ree.org) using the methodology described by Rubolini et al.52. These phylogenetic 
trees were not fully resolved, and polytomies were arbitrarily resolved by adding a branch distance of 10–8 to 
one randomly chosen branch in the polytomy using the function ‘multi2di’ from the R package ‘ape’53. Publica-
tion bias (due to missing studies that were not published because of negative or null results54) was evaluated by 
inspecting the symmetry in funnel plots and using the Egger’s regression test55,56 by including the standard error 
of the effect sizes as an additional moderator within the model. If the intercept significantly deviated from zero 
(significance of p < 0.1055), the overall relationship between the precision and size of studies included in the data 
set was considered asymmetrical or, in other words, biased56. Of the nine fitted models, only macrophages and 
eosinophils suggested presence of publication bias (both p < 0.001). Diagnostic tests for identifying influential 
data points and outliers, and rules for excluding these types of cases are not well established, particularly for 
multivariate/multilevel meta-analytical models57. We used the approach described by Habeck and Schultz58 by 
identifying the influential outliers causing the bias and running the models after excluding these values. We 
report results after removing one effect size from the final model of macrophages, and two from the model of 
eosinophils (see Table S3 for the final sample sizes used in the analyses). The effect of season on the immune sex-
bias was tested using the Omnibus test (QM) for moderators (a Wald-type Chi-squared) implemented within 
the function ‘rma.mv’ (metafor R package), which tests whether the explained heterogeneity by a parameter 
(here, season) is significantly greater than the unexplained overall heterogeneity46. The HL and HA assays were 
excluded from further analysis because only estimates of breeding birds were available. We used Cochran’s Q 
test to estimate whether the (residual) heterogeneity among effect sizes was greater than expected by sampling 
error alone59. We also calculated the variance in effect sizes due to phylogenetic relatedness (I2

phylogeny), differ-
ences among studies (I2

study), and the total variance attributed to the random effect variables (i.e. the addition of 
the two effects, I2

total).

Generalised linear mixed models.  To explore if seasonal changes affected the sexes independently, we fitted 
generalised linear mixed models by Markov chain Monte Carlo techniques using the R package ‘MCMCglmm’60. 
This analysis differs from the previous in that here we analysed variation of each sex parameters according to sea-
son, instead of one ‘combined’ effect size. This approach helps to understand how each sex responds to season, 
because changes in effect size estimates from the non-breeding period to the breeding period may be the result 
of increases or reduction in one or both sexes at once. Each of these seven models (HA and HL were excluded) 
had immune variables as response variable, and season, sex (females/males), and the two-way interaction of 
season and sex as explanatory (fixed-effect) variables. All models included study and phylogeny as random-
effect variables. The H/L ratio was log-transformed. The H/L ratio and PHA models were run with a Gaussian 
family distribution. The rest of the models were run using a binomial family distribution. To investigate whether 
the above comparisons may have been confounded by different species composition in the breeding and non-
breeding samples, we ran these models two times. First using the full dataset, and then using a subset of the data 
that included only those species for which we had data from both non-breeding and breeding seasons (Table S4). 
We used parameter expanded (random-effects) and inverse-Wishart priors (fixed-effects) based on improving 
model convergence. Further details of model specification are given in the supplementary material. Convergence 
and autocorrelation levels were assessed through the Gelman-Rubin test61, trace graphs and the ‘autocorr’ func-
tion, implemented in the R package ‘coda’62. MCMCglmm results are expressed as posterior mean, lower and 
upper 95% credible intervals, and significance as a pMCMC value.

(1)SD = SE ×
√
n

(2)SD =

√
n×

(

upperCI−lowerCI
)

2δ

http://birdtree.org
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Results
Sex biases in immunity and the effect of season (meta‑analysis).  Our results show that across 
all immune variables, while there was no overall difference between males and females (Fig. 1A), there was an 
important variation in sex differences between the non-breeding and the breeding period (Fig. 1B; Table 1). 
Macrophage concentration, haemolysis score and PHA response were significantly male-biased during breed-
ing (Fig. 1B). During the non-breeding period, BKA tended to be higher in males (p = 0.089) while heterophil 
concentration tended to be higher in females (p = 0.079). Both phylogeny and study explained an important 
proportion of the variance in immune variables (Table 1).

Seasonal changes had a significant effect on the sex bias estimates of three immune parameters: hetero-
phil concentration, H/L ratio and PHA response (Omnibus test of coefficients [df = 1]: 8.131, p = 0.004; 8.547, 
p = 0.003; 4.832, p = 0.028, respectively; Table 2). These results indicate that, in these immune parameters, the 
immune estimates from the non-breeding and breeding periods were significantly different from each other. 
In all cases the direction of the skew was towards males. A non-significant trend in the opposite direction was 
found for lymphocyte concentration and for BKA, where estimates obtained in the breeding season deviated 
towards females (Table 2).

Effect of seasonal changes on males and females (GLMM analysis).  The GLMM–MCMC models 
revealed a significant interaction between season and sex for heterophil concentration and H/L ratio, indicating 
that these variables show a greater change between non-breeding and breeding season in males than in females 
(Fig. 2A,E; Table 3). These results were consistent between models using the whole data set and those using a 
subset of species for which data during both the non-breeding and breeding season were available (Table S5). 
Also, for BKA, seasonal changes tended to differ between males and females when tested with the full data set 
(p = 0.078), but the pattern became weaker when using the subset of data (Table S5), arguably due to low sample 
size in this variable (Fig. 2G). The other immune parameters (lymphocytes, macrophages, eosinophils, PHA) 
showed no significant sex differences in the change between non-breeding and the breeding period, suggesting 
that males and females either increase or decrease their levels in comparable proportions (Fig. 2, Table 3).

Immune response

H/L ratio

Lymphocytes

Heterophils

White blood cells s k

4521

4723

27

168

Haemolysis†

Bacteria-killing ability

Phytohaemagglutinin

73

33

-0.3 0.0 0.3 -0.5 0.0 1.0

A) Overall estimates B) Estimates by season

Hedge’s g

Non-breeding
Breeding

Haemagglutination† 33
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*
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Figure 1.   Sex bias in white blood cells and immune response assays in adult wild birds (weighted average effect 
sizes and 95% confidence intervals). (A) Overall in immune estimates. (B) Immune estimates for non-breeding 
(in cyan) and breeding (in orange) birds. Weighted averages were tested whether they differed significantly from 
zero (i.e. no sex bias, dashed line; see statistics in Table 1), where positive estimates mean male bias and negative 
female bias. s, number of species; k, number of effect sizes; H/L ratio, heterophils/lymphocytes ratio; *statistical 
significance (p < 0.05); †data from breeding birds only.
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Discussion
To our knowledge, this is the first multi-species analysis investigating the effect of seasonal variation on sex-
specific immunity in wild birds. We showed an overall lack of sex differences in the immune variables studied. 
However, when taking season into account, subtle but consistent patterns arise indicating that males are undergo-
ing more substantial reorganization of their leukocyte composition during reproduction than females.

Similar to Kelly et al.9, the overall meta-analysis of the immune parameters showed no significant sex biases 
in immunity, although with subtle variations of male and female biases in the estimates. In multilevel meta-
analysis, non-significant results could originate from small effect sizes being close to zero (i.e. no sex difference). 
However, the heterogeneity attributed to random effect variables was rather high (I2 and Q test63), suggesting 
that our data set had great variation of opposing effect sizes (i.e. some species estimates showing a male bias and 
others a female bias). Breaking the immune estimates down by season revealed notable sex differences between 
the non-breeding and breeding period, with macrophage concentration, PHA response and haemolysis score 
being male-biased, and a significant seasonal influence on the estimated sex bias for heterophil concentration, 
H/L ratio and PHA response. Heterophils and lymphocytes make up to 95% of the total leucocyte count64. Both 
cell types have important roles in innate immunity, but only lymphocytes participate in adaptive immunity34,36. 
Macrophage levels were male-biased during the breeding period, but no sex differences were found for levels of 
eosinophils. Macrophages and eosinophils are specialised against unspecific cells like apoptotic cells or microbes, 

Table 1.   Sex bias in (a) white blood cell types and the H/L ratio, and (b) immune response assays in adult 
wild birds. p values < 0.05 in bold. H/L ratio, heterophils/lymphocytes ratio; PHA, phytohaemagglutinin test; 
BKA, bacteria-killing ability assay; HL, haemolysis assay; HA, haemagglutination assay; I2

phylogeny, variance due 
to phylogenetic relatedness; I2

study, variance due to differences among studies; I2
total, total variance attributed to 

the random effect; QREML, Cochran’s Q test for (residual) heterogeneity. Z statistic tests if immune parameter 
estimate differ from zero (no sex difference).

Immune 
variable I2

phylogeny (%) I2
study (%) I2

total (%) QREML (P)

Overall estimates Estimates by season

Overall (95% 
CI) Z statistic (P)

Non-breeding 
(95% CI) Z statistic (P)

Breeding (95% 
CI) Z statistic (P)

(a) White blood cells

Heterophils 23.69 46.08 69.76 171.238 
(< 0.001)

0.005 (− 0.327, 
0.337) 0.027 (0.978) − 0.373 

(− 0.804, 0.057) − 1.698 (0.089) 0.158 (− 0.186, 
0.502) 0.902 (0.367)

Lymphocytes 45.17 33.91 79.07 182.957 
(< 0.001)

0.020 (− 0.457, 
0.498) 0.084 (0.933) 0.280 (− 0.279, 

0.839) 0.981 (0.327) − 0.079 
(− 0.564, 0.406) − 0.318 (0.750)

Macrophages  < 0.01 22.98 22.98 26.780 (0.367) 0.128 (− 0.036, 
0.291) 1.531 (0.126) − 0.018 

(− 0.314, 0.279) − 0.117 (0.907) 0.200 (0.020, 
0.380) 2.175 (0.030)

Eosinophils 38.52 0.00 38.52 26.520 (0.277) − 0.007 
(− 0.305, 0.292) − 0.045 (0.964) 0.073 (− 0.307, 

0.452) 0.375 (0.708) − 0.052 
(− 0.371, 0.268) − 0.317 (0.752)

H/L ratio 40.18 33.39 73.58 191.669 
(< 0.001)

0.143 (− 0.296, 
0.582) 0.639 (0.523) − 0.171 

(− 0.700, 0.358) − 0.634 (0.526) 0.240 (− 0.199, 
0.680) 1.071 (0.284)

(b) Immune response

PHA 0.00 9.54 9.54 13.839 (0.462) 0.188 (− 0.040, 
0.415) 1.614 (0.107) − 0.150 

(− 0.508, 0.208) − 0.821 (0.412) 0.341 (0.063, 
0.619) 2.407 (0.016)

BKA  < 0.01 0.00  < 0.01 15.122 (0.010) 0.115 (− 0.145, 
0.376) 0.868 (0.385) 0.571 (− 0.066, 

1.207) 1.758 (0.079) − 0.067 
(− 0.328, 0.194) − 0.503 (0.615)

HL 33.39 0.00 33.39 2.080 (0.354) – – – – 0.443 (0.048, 
0.837) 2.199 (0.028)

HA 28.45 33.48 61.93 4.605 (0.100) – – – – − 0.019 
(− 0.533, 0.495) − 0.074 (0.941)

Table 2.   Omnibus test of coefficients (QM) testing for the effect of season on the sex bias of the 
immune parameters studied. p values < 0.05 in bold. H/L ratio, heterophils/lymphocytes ratio; PHA, 
phytohaemagglutinin test; BKA, bacteria-killing ability assay.

Immune variable QM (df = 1) P

White blood cells

Heterophils 8.131 0.004

Lymphocytes 3.453 0.063

Macrophages 1.662 0.197

Eosinophils 0.488 0.485

H/L ratio 8.547 0.018

Immune response

PHA 4.832 0.028

BKA 3.301 0.069
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and against parasite infections, respectively1. Studies reporting sex differences in these two leucocyte lines in 
birds are scarce. Variation in levels of eosinophils are attributed to different levels of infection by gastrointestinal 
parasites in birds65,66, and sex differences in macrophage gene expression associated to the sex chromosomes 
have been reported in chicken67.

Seasonally varying levels in (1) stress (defined as a physiological response due to strain or tension), (2) 
hormones and (3) workload may form the basis of mechanisms that could explain our findings. First, stressors 
associated with breeding could cause immunosuppression. It has been suggested that behaviours such as sexual 
display and nestling feeding in birds are comparable to strenuous exercise in that they impose a high metabolic 
rate68,69. In addition, because males are in general more aggressive and dominant than females, in periods of low 
food abundance (such as winter) males could secure their access to food over females, which seems to cause 
strain in birds70–72. This could explain our results for H/L ratio, since increments in H/L ratio appear to be asso-
ciated with sustained stress in birds35,40,73. Although the H/L ratio was not sex-biased during the non-breeding 
or the breeding season, both estimates were different from each other, and males experienced a greater change 
between the seasons than females. Second, the breeding period in birds is characterised by behavioural changes 
triggered by the sex hormones. Androgens and oestrogens have traditionally been thought to influence immunity 
in birds by up- or down-regulating their immune system. However, current evidence disregards sex hormones 
(mostly testosterone) as important immune modulators in birds7,8. For instance, Roberts et al.74 found no effect 
of testosterone on immune response in Japanese Quail, Coturnix japonica. Li et al.75 found that in Eurasian Tree 
Sparrow, Passer montanus, testosterone concentration was positively correlated with the strength of PHA response 
in males, whereas in females the correlation was negative. Additionally, Duffy et al.76 concluded that the increase 
in plasma corticosterone upon treatment with testosterone implants in European Starlings, Sturnus vulgaris, was 
the likely cause of immunosuppression in males and females rather than testosterone itself. Conclusions from 
studies in wild birds have been based mainly on correlational observations, which may obscure the real effect 
of sex hormones on immunity. Furthermore, our results are consistent with previous literature failing to find 
consistent support for the immunocompetence-handicap hypothesis7,9,77,78.

Third, reproduction requires temporarily elevated energy and nutrient input, which could compromise 
immune function16,79,80. Trade-offs between reproduction and self-maintenance may vary both between the 
sexes and over specific stages of reproduction while each sex invests in traits that will maximise reproductive 
success81. Accordingly, but depending on breeding system and sex roles, during mating it might be the males but 
during egg production and incubation the females that compromise their immune function relatively more. For 
example, in a clutch size manipulation experiment in Common Eiders, Somateria mollissima, Hanssen et al.82 
showed that females incubating larger clutches lost more body mass and showed reduced immune function 
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Figure 2.   Characteristics of the immune system in wild birds. White blood cells (A–D, expressed as the 
proportion of the total white blood cell count), heterophils/lymphocytes (H/L) ratio (E), phytohaemagglutinin 
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95% credibility 
intervals

Post. mean Lower Upper P

(a) Heterophils (n = 90, s = 21)

Intercept − 0.448 − 1.336 0.338 0.236

Season (breeding)a − 0.113 − 0.579 0.317 0.602

Sex (males)b − 0.396 − 0.723 − 0.124 0.012

Season (breeding)a * sex (males)b 0.429 0.036 0.760 0.018

Random

  Study 0.560 0.070 1.069

  Phylogeny 0.411 < 0.001 1.310

  Residual 0.081 0.033 0.136

(b) Lymphocytes (n = 94, s = 23)

Intercept − 0.091 − 0.768 0.548 0.782

Season (breeding)a 0.035 − 0.405 0.393 0.864

Sex (males)b 0.254 − 0.026 0.580 0.094

Season (breeding)a * sex (males)b − 0.221 − 0.570 0.148 0.238

Random

  Study 0.170 < 0.001 0.426

  Phylogeny 0.336 < 0.001 0.840

  Residual 0.109 0.052 0.163

(c) Macrophages (n = 56, s = 15)

Intercept − 3.494 − 5.220 − 1.857 0.002

Season (breeding)a − 0.476 − 1.026 0.151 0.112

Sex (males)b 0.019 − 0.375 0.411 0.932

Season (breeding)a * sex (males)b 0.071 − 0.485 0.494 0.750

Random

  Study 1.065 < 0.001 3.393

  Phylogeny 1.839 < 0.001 5.211

  Residual 0.008 < 0.001 0.029

(d) Eosinophils (n = 56, s = 13)

Intercept − 3.873 − 5.978 − 2.199 0.002

Season (breeding)a 0.220 − 0.425 0.793 0.448

Sex (males)b 0.251 − 0.187 0.741 0.256

Season (breeding)a * sex (males)b − 0.042 − 0.620 0.491 0.878

Random

  Study 1.483 0.140 3.671

  Phylogeny 2.548 0.422 5.853

  Residual 0.043 < 0.001 0.134

(e) H/L ratio (n = 110, s = 27)

Intercept − 0.577 − 1.200 0.096 0.088

Season (breeding)a 0.054 − 0.277 0.422 0.764

Sex (males)b − 0.361 − 0.677 − 0.006 0.032

Season (breeding)a * sex (males)b 0.483 0.095 0.875 0.014

Random

  Study 0.517 0.137 0.973

  Phylogeny 0.233 < 0.001 0.777

  Residual 0.182 0.130 0.237

(f) PHA response (n = 32, s = 8)

Intercept 0.648 0.182 1.139 0.012

Season (breeding)a 0.097 − 0.140 0.320 0.420

Sex (males)b 0.017 − 0.219 0.240 0.884

Season (breeding)a * sex (males)b 0.060 − 0.239 0.309 0.664

Random

  Study 0.050 < 0.001 0.231

  Phylogeny 0.155 < 0.001 0.424

  Residual 0.034 0.018 0.056

(g) BKA assay (n = 14, s = 3)

Continued
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(lymphocyte levels and specific antibody response). While in lekking males of Greater Sage-grouse, Centrocer‑
cus urophasianus, alfa males showed a daily energy expenditure two times higher than a non-displaying male 
and four times higher than their basal metabolic rate68. Unfortunately, the data collected for our meta-analysis 
were obtained from studies that sampled at various moments throughout the entire breeding period and from 
species with different breeding systems, which prevented us from drawing further conclusions. Likewise, the 
present analysis relied on a selection of more generic indicators of (innate) immunity, and future research will 
profit by including also more specific indicators and those that belong to the adaptive arm of the immune system. 
Moreover, immune tolerance and autoimmunity can significantly influence the cost balance and, therefore, the 
outcome of reproduction-immunity trade-offs83,84.

Although data on immune response variables were not available for many species, we did find differences 
between males and females. The four immune assays analysed reflect innate immunity, except the PHA test that, if 
repeated more than once, also includes components of the adaptive immunity85. The PHA test and the haemolysis 
assay were significantly male-biased during breeding, although the latter estimate was obtained only from three 
effect sizes. Generally, the PHA response in birds appears to decrease during breeding42,86, although no associa-
tion with breeding was found in Chinstrap Penguins, Pygoscelis antarctica27. In Eurasian Tree Sparrow, Li et al.75 
found no differences in PHA responses between breeding males and females, while Zhao et al.87 found that body 
condition but not breeding stage correlated with their haemolysis levels. Interestingly, in our analysis the PHA 
test and the BKA assay showed opposite responses to season (Figs. 1B and 2F,G). In both cases the differences 
seemed to be largely driven by changes in males (Fig. 2F,G). However, with a relatively small sample size and 
considering the subset analysis, the results of the model interaction of BKA assay should be taken cautiously. Yet 
another possible explanation for our results on immune response variables might be based on sexual selection 
theory, and predicts that the competing sex (males in most mating systems) will evolve higher innate immune 
response. According to this scenario, selection would favour strong inflammation responses as an aid for healing 
wounds, because the competing sex is more involved in aggressive interactions causing physical injury88,89. The 
inclusion of mating system should thus be considered in future studies in order to test this hypothesis.

Here we have shown that across wild birds, sex differences in certain measures of immune status and response 
associated to the breeding season may occur. The exact causes of these seasonal patterns of sexual changes in 
immune function are difficult to identify. In addition to the complex nature of the avian immune system, a num-
ber of unaccounted variables could directly or indirectly confound our analysis, such as genetic, environmental 
and ecological factors (like photoperiod or mate competition), with the potential of affecting one or several 
immune components, and in different sex-specific fashion. The scarcity of available studies to date prevented us 
also from exploring factors like mating system and parental care, which seem important to further understand 
the causes of seasonal and sexual changes in immunity. Nonetheless, our results highlight sexual differences in 
immune function as a relevant topic that requires further attention in wild birds.

Data availability
The full dataset and R code can be found at https​://doi.org/10.6084/m9.figsh​are.13476​819.v1.

Received: 3 July 2020; Accepted: 14 December 2020

References
	 1.	 Abbas, A., Lichtman, A. H. & Pillai, S. Basic Immunology: Functions and Disorders of the Immune System 5th edn. (Elsevier, 

Amsterdam, 2015).
	 2.	 Møller, A. P. & Saino, N. Immune response and survival. Oikos 104, 299–304. https​://doi.org/10.1111/j.0030-1299.2004.12844​.x 

(2004).
	 3.	 Hegemann, A., Matson, K. D., Flinks, H. & Tieleman, I. B. Offspring pay sooner, parents pay later: experimental manipula-

tion of body mass reveals trade-offs between immune function, reproduction and survival. Front. Zool. 10, 77. https​://doi.
org/10.1186/1742-9994-10-77 (2013).

95% credibility 
intervals

Post. mean Lower Upper P

Intercept − 0.253 − 4.987 4.873 0.864

Season (breeding)a − 0.195 − 1.709 1.318 0.718

Sex (males)b 1.356 0.011 2.889 0.056

Season (breeding)a * sex (males)b − 1.594 − 3.499 0.219 0.078

Random

  Study 6.441 < 0.001 22.95

  Phylogeny 5.375 < 0.001 20.10

  Residual 0.598 0.066 1.510

Table 3.   White blood cell levels and immune response in wild birds in relation to sex and season (MCMC 
generalised linear mixed models; n, total number of individuals; s, number of species). p values < 0.05 in bold. 
a Relative to the non-breeding period. b Relative to females.

https://doi.org/10.6084/m9.figshare.13476819.v1
https://doi.org/10.1111/j.0030-1299.2004.12844.x
https://doi.org/10.1186/1742-9994-10-77
https://doi.org/10.1186/1742-9994-10-77


9

Vol.:(0123456789)

Scientific Reports |         (2021) 11:1349  | https://doi.org/10.1038/s41598-020-80030-9

www.nature.com/scientificreports/

	 4.	 Nystrand, M. & Dowling, D. K. Effects of immune challenge on expression of life-history and immune trait expression in sexually 
reproducing metazoans: a meta-analysis. BMC Biol. 18, 135. https​://doi.org/10.1186/s1291​5-020-00856​-7 (2020).

	 5.	 Furman, D. et al. Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza 
vaccination. PNAS 111, 869–874. https​://doi.org/10.1073/pnas.13210​60111​ (2014).

	 6.	 Klein, S. & Flanagan, K. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638. https​://doi.org/10.1038/nri.2016.90 
(2016).

	 7.	 Roberts, M. L., Buchanan, K. L. & Evans, M. R. Testing the immunocompetence handicap hypothesis: a review of the evidence. 
Anim. Behav. 68, 227–239. https​://doi.org/10.1016/j.anbeh​av.2004.05.001 (2004).

	 8.	 Foo, Y. Z. et al. The effects of sex hormones on immune function: a meta-analysis. Biol. Rev. 92, 551–571. https​://doi.org/10.1111/
brv.12243​ (2017).

	 9.	 Kelly, C. D. et al. Sexual dimorphism in immunity across animals: a meta-analysis. Ecol. Lett. 21, 1885–1894. https​://doi.
org/10.1111/ele.13164​ (2018).

	10.	 Tella, J. L., Scheuerlein, A. & Ricklefs, R. E. Is cell-mediated immunity related to the evolution of life-history strategies in birds?. 
Proc. R. Soc. B. 269, 1059–1066. https​://doi.org/10.1098/rspb.2001.1951 (2002).

	11.	 Korver, D. R. Implications of changing immune function through nutrition in poultry. Anim. Feed. Sci. Technol. 173, 54–64. https​
://doi.org/10.1016/j.anife​edsci​.2011.12.019 (2012).

	12.	 Demina, I. et al. Time-keeping programme can explain seasonal dynamics of leukocyte profile in a migrant bird. J. Avian Biol. 50, 
e02117. https​://doi.org/10.1111/jav.02117​ (2019).

	13.	 Martin, L. B. et al. Immune activity in temperate and tropical house sparrows: a common-garden experiment. Ecology 85, 2323–
2331. https​://doi.org/10.1890/03-0365 (2004).

	14.	 Hõrak, P. et al. Health and reproduction: the sex-specific clinical profile of great tits (Parus major) in relation to breeding. Can. J. 
Zool. 76, 2235–2244. https​://doi.org/10.1139/cjz-76-12-2235 (1998).

	15.	 Merrill, L. et al. Immune function in an avian brood parasite and its nonparasitic relative. Physiol. Biochem. Zool. 86, 61–72. https​
://doi.org/10.1086/66885​2 (2013).

	16.	 Hasselquist, D. & Nilsson, J.-A. Physiological mechanisms mediating costs of immune responses: what can we learn from studies 
of birds?. Anim. Behav. 83, 1303–1312. https​://doi.org/10.1016/j.anbeh​av.2012.03.025 (2012).

	17.	 Marais, M., Maloney, S. K. & Gray, D. A. The metabolic cost of fever in Pekin ducks. J. Therm. Biol. 36, 116–120. https​://doi.
org/10.1016/j.jther​bio.2010.12.004 (2011).

	18.	 Nilsson, J., Granbom, M. & Råberg, L. Does the strength of an immune response reflect its energetic cost?. J. Avian. Biol. 38, 
488–494. https​://doi.org/10.1111/j.0908-8857.2007.03919​.x (2007).

	19.	 Bryant, D. M. & Westerterp, K. R. The energy budget of the House martin (Delichon urbica). Ardea 55, 91–102. https​://doi.
org/10.5253/arde.v68.p91 (1980).

	20.	 Maxson, S. J. & Oring, L. W. Breeding season time and energy budgets of the polyandrous spotted sandpiper. Behaviour 74, 200–263. 
https​://doi.org/10.1163/15685​3980X​00474​ (1980).

	21.	 Brunton, D. H. Energy expenditure in reproductive effort of male and female Killdeer (Charadrius vociferus). Auk 105, 553–564. 
https​://doi.org/10.1093/auk/105.3.553 (1988).

	22.	 Merrill, L. et al. Sex-specific variation in Brown-headed cowbird immunity following acute stress: a mechanistic approach. Oecologia 
170, 25–38. https​://doi.org/10.1007/s0044​2-012-2281-4 (2012).

	23.	 Romero, L. M. Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates. Gen. Comp. Endocrinol. 128, 
1–24. https​://doi.org/10.1016/S0016​-6480(02)00064​-3 (2002).

	24.	 Matson, K. D., Tieleman, B. I. & Klasing, K. C. Capture stress and the bactericidal competence of blood and plasma in five species 
of tropical birds. Physiol. Biochem. Zool. 79, 556–564. https​://doi.org/10.1086/50105​7 (2006).

	25.	 Cyr, N. E., Earle, K., Tam, C. & Romero, L. M. The effect of chronic psychological stress on corticosterone, plasma metabolites, and 
immune responsiveness in European starlings. Gen. Comp. Endocrinol. 154, 59–66. https​://doi.org/10.1016/j.ygcen​.2007.06.016 
(2007).

	26.	 Gao, S., Sanchez, C. & Deviche, P. J. Corticosterone rapidly suppresses innate immune activity in the House sparrow (Passer 
domesticus). J. Exp. Biol. 220, 322–327. https​://doi.org/10.1242/jeb.14437​8 (2017).

	27.	 Palacios, M. J. et al. Cellular and humoral immunity in two highly demanding energetic life stages: reproduction and moulting in 
the Chinstrap Penguin. J. Ornithol. 159, 283–290. https​://doi.org/10.1007/s1033​6-017-1499-7 (2018).

	28.	 Martin, L. B. et al. Captivity induces hyper-inflammation in the house sparrow (Passer domesticus). J. Exp. Biol. 214, 2579–2585. 
https​://doi.org/10.1242/jeb.05721​6 (2011).

	29.	 Jakubas, D., Wojczulanis-Jakubas, K. & Kosmicka, A. Factors affecting leucocyte profiles in the Little auk, a small Arctic seabird. 
J. Ornithol. 156, 101–111. https​://doi.org/10.1007/s1033​6-014-1101-5 (2015).

	30.	 Lee, K. A. Linking immune defenses and life history at the levels of the individual and the species. Integr. Comp. Biol. 46, 1000–1015. 
https​://doi.org/10.1093/icb/icl04​9 (2006).

	31.	 Nordling, D. et al. Reproductive effort reduces specific immune response and parasite resistance. Proc. Biol. Sci. 265, 1291–1298. 
https​://doi.org/10.1098/rspb.1998.0432 (1998).

	32.	 Merrill, L. et al. A blurring of life-history lines: immune function, molt and reproduction in a highly stable environment. Gen. 
Comp. Endocrinol. 213, 65–73. https​://doi.org/10.1016/j.ygcen​.2015.02.010 (2015).

	33.	 Moher, D. et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, e1000097. 
https​://doi.org/10.1136/bmj.b2535​ (2009).

	34.	 Davison, F., Kaspers, B. & Schat, K. A. Avian Immunology (Elsevier, Amsterdam, 2008).
	35.	 Davis, A. K., Maney, D. L. & Maerz, J. C. The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. 

Funct. Ecol. 22, 760–772. https​://doi.org/10.1111/j.1365-2435.2008.01467​.x (2008).
	36.	 Dein, F. J. Hematology. In Clinical Avian Medicine and Surgery (eds Harrison, B. G. & Harrison, L. R.) 174–191 (WB Sander, 

Philadelphia, 1986).
	37.	 Ots, I., Murumägi, A. & Hõrak, P. Haematological health state indices of reproducing Great tits: methodology and sources of 

natural variation. Funct. Ecol. 12, 700–707. https​://doi.org/10.1046/j.1365-2435.1998.00219​.x (1998).
	38.	 Hõrak, P. et al. Immune function and survival of great tit nestlings in relation to growth conditions. Oecologia 121, 316–322. https​

://doi.org/10.1007/s0044​20050​934 (1999).
	39.	 Ots, I. & Hõrak, P. Health impact of blood parasites in breeding great tits. Oecologia 166, 441–448. https​://doi.org/10.1007/s0044​

20050​608 (1998).
	40.	 Skwarska, J. Variation of heterophil-to-lymphocyte ratio in the Great Tit Parus major: a review. Acta Ornithol. 53, 103–114. https​

://doi.org/10.3161/00016​454AO​2018.53.2.001 (2019).
	41.	 Davis, A. K. Effects of handling time and repeated sampling on avian white blood cell counts. J. Field Ornithol. 76, 334–338. https​

://doi.org/10.1648/0273-8570-76.4.334 (2005).
	42.	 Martin, L. B. et al. Phytohemagglutinin-induced skin swelling in birds: histological support for a classic immunoecological tech-

nique. Funct. Ecol. 20, 290–299. https​://doi.org/10.1111/j.1365-2435.2006.01094​.x (2006).
	43.	 French, S. S. & Neuman-Lee, L. A. Improved ex vivo method for microbiocidal activity across vertebrate species. Biol. Open. 1, 

482–487. https​://doi.org/10.1242/bio.20129​19 (2012).

https://doi.org/10.1186/s12915-020-00856-7
https://doi.org/10.1073/pnas.1321060111
https://doi.org/10.1038/nri.2016.90
https://doi.org/10.1016/j.anbehav.2004.05.001
https://doi.org/10.1111/brv.12243
https://doi.org/10.1111/brv.12243
https://doi.org/10.1111/ele.13164
https://doi.org/10.1111/ele.13164
https://doi.org/10.1098/rspb.2001.1951
https://doi.org/10.1016/j.anifeedsci.2011.12.019
https://doi.org/10.1016/j.anifeedsci.2011.12.019
https://doi.org/10.1111/jav.02117
https://doi.org/10.1890/03-0365
https://doi.org/10.1139/cjz-76-12-2235
https://doi.org/10.1086/668852
https://doi.org/10.1086/668852
https://doi.org/10.1016/j.anbehav.2012.03.025
https://doi.org/10.1016/j.jtherbio.2010.12.004
https://doi.org/10.1016/j.jtherbio.2010.12.004
https://doi.org/10.1111/j.0908-8857.2007.03919.x
https://doi.org/10.5253/arde.v68.p91
https://doi.org/10.5253/arde.v68.p91
https://doi.org/10.1163/156853980X00474
https://doi.org/10.1093/auk/105.3.553
https://doi.org/10.1007/s00442-012-2281-4
https://doi.org/10.1016/S0016-6480(02)00064-3
https://doi.org/10.1086/501057
https://doi.org/10.1016/j.ygcen.2007.06.016
https://doi.org/10.1242/jeb.144378
https://doi.org/10.1007/s10336-017-1499-7
https://doi.org/10.1242/jeb.057216
https://doi.org/10.1007/s10336-014-1101-5
https://doi.org/10.1093/icb/icl049
https://doi.org/10.1098/rspb.1998.0432
https://doi.org/10.1016/j.ygcen.2015.02.010
https://doi.org/10.1136/bmj.b2535
https://doi.org/10.1111/j.1365-2435.2008.01467.x
https://doi.org/10.1046/j.1365-2435.1998.00219.x
https://doi.org/10.1007/s004420050934
https://doi.org/10.1007/s004420050934
https://doi.org/10.1007/s004420050608
https://doi.org/10.1007/s004420050608
https://doi.org/10.3161/00016454AO2018.53.2.001
https://doi.org/10.3161/00016454AO2018.53.2.001
https://doi.org/10.1648/0273-8570-76.4.334
https://doi.org/10.1648/0273-8570-76.4.334
https://doi.org/10.1111/j.1365-2435.2006.01094.x
https://doi.org/10.1242/bio.2012919


10

Vol:.(1234567890)

Scientific Reports |         (2021) 11:1349  | https://doi.org/10.1038/s41598-020-80030-9

www.nature.com/scientificreports/

	44.	 Matson, K. D., Ricklefs, R. E. & Klasing, K. C. A hemolysis-hemagglutination assay for characterizing constitutive innate humoral 
immunity in wild and domestic birds. Dev. Comp. Immunol. 29, 275–286. https​://doi.org/10.1016/j.dci.2004.07.006 (2005).

	45.	 Higgins, J. P. T. & Deeks, J. J. Selecting studies and collecting data. In Cochrane Handbook for Systematic Reviews of Interventions 
(eds Higgins, J. P. T. & Green, S.) 151–185 (Wiley, New York, 2008).

	46.	 Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48. https​://doi.org/10.18637​/jss.
v036.i03 (2010).

	47.	 Hedges, L. Distribution theory for Glass’s estimator of effect size and related estimators. J. Educ. Behav. Stat. 6, 107–128. https​://
doi.org/10.3102/10769​98600​60021​07 (1981).

	48.	 Rosenberg, M. S., Rothstein, H. & Gurevitch, J. Effect sizes: conventional choices and calculations. In Handbook of Meta-Analysis 
in Ecology and Evolution (eds Koricheva, J. et al.) 61–71 (Princeton University Press, Princeton, 2013).

	49.	 Jetz, W. et al. The global diversity of birds in space and time. Nature 491, 444–448. https​://doi.org/10.1038/natur​e1163​1 (2012).
	50.	 Holder, M. T., Sukumaran, J. & Lewis, P. O. A justification for reporting the majority-rule consensus tree in Bayesian phylogenetics. 

Syst. Biol. 57, 814–821. https​://doi.org/10.1080/10635​15080​24223​08 (2008).
	51.	 Sukumaran, J. & Holder, M. T. DendroPy: a Python library for phylogenetic computing. Bioinformatics 26, 1569–1571. https​://

doi.org/10.1093/bioin​forma​tics/btq22​8 (2010).
	52.	 Rubolini, D., Liker, A., Garamszegi, L. Z., Møller, A. P. & Saino, N. Using the BirdTree.org website to obtain robust phylogenies 

for avian comparative studies: a primer. Curr. Zool. 61, 959–965. https​://doi.org/10.1093/czool​o/61.6.959 (2015).
	53.	 Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290. 

https​://doi.org/10.1093/bioin​forma​tics/btg41​2 (2004).
	54.	 Koricheva, J., Gurevitch, J. & Mengersen, K. Handbook of Meta-Analysis in Ecology and Evolution (Princeton University Press, 

Princeton, 2013).
	55.	 Egger, M., Smith, G. D. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634. https​://doi.

org/10.1136/bmj.315.7109.629 (1997).
	56.	 Sterne, J. A. & Egger, M. Regression methods to detect publication and other bias in meta-analysis. In Publication Bias in Meta-

Analysis: Prevention, Assessment, and Adjustments (eds Rothstein, H. R. et al.) 99–110 (Wiley, New York, 2005).
	57.	 Viechtbauer, W. & Cheung, M.W.-L. Outlier and influence diagnostics for meta-analysis. Res. Synth. Methods 1, 112–125. https​://

doi.org/10.1002/jrsm.11 (2010).
	58.	 Habeck, C. W. & Schultz, A. K. Community-level impacts of White-tailed deer on understorey plants in North American forests: 

a meta-analysis. AoB Plants 7, 119. https​://doi.org/10.1093/aobpl​a/plv11​9 (2015).
	59.	 Borenstein, M., Hedges, L. V., Higgins, J. P. T. & Rothstein, H. R. Introduction to Meta-Analysis (Wiley, New York, 2009).
	60.	 Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R Package. J. Stat. Softw. 

33, 1–22. https​://doi.org/10.18637​/jss.v033.i02 (2010).
	61.	 Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).
	62.	 Plummer, M. et al. CODA: convergence diagnosis and output analysis for MCMC. R News 6, 7–11 (2006).
	63.	 Higgins, J. P. T. et al. Measuring inconsistency in meta-analysis. BMJ 327, 557–560. https​://doi.org/10.1136/bmj.327.7414.557 

(2003).
	64.	 Clark, P., Boardman, W. S. J. & Raidal, S. R. Atlas of Clinical Avian Hematology (Wiley, New York, 2009).
	65.	 Dehnhard, N. & Hennicke, J. C. Leucocyte profiles and body condition in breeding Brown boobies and Red-tailed tropicbirds: 

effects of breeding stage and sex. Aust. J. Zool. 61, 178–185. https​://doi.org/10.1071/ZO121​23 (2013).
	66.	 Gallo, L. et al. Hematology, plasma biochemistry, and trace element reference values for free-ranging adult Magellanic penguins 

(Spheniscus magellanicus). Polar Biol. 42, 733. https​://doi.org/10.1007/s0030​0-019-02467​-7 (2019).
	67.	 Garcia-Morales, C. et al. Cell-autonomous sex differences in gene expression in chicken bone marrow-derived macrophages. J. 

Immunol. 194, 2338–2344. https​://doi.org/10.4049/jimmu​nol.14019​82 (2015).
	68.	 Vehrencamp, S. L., Bradbury, J. W. & Gibson, R. M. The energetic cost of display in male sage grouse. Anim. Behav. 38, 885–896. 

https​://doi.org/10.1016/S0003​-3472(89)80120​-4 (1989).
	69.	 Hambly, C., Markman, S., Roxburgh, L. & Pinshow, B. Seasonal sex-specific energy expenditure in breeding and non-breeding 

Palestine sunbirds Nectarinia osea. J. Avian Biol. 38, 190–197. https​://doi.org/10.1111/j.2007.0908-8857.03774​.x (2007).
	70.	 Fokidis, H. B. et al. Unpredictable food availability induces metabolic and hormonal changes independent of food intake in a 

sedentary songbird. J. Exp. Biol. 215, 2920–2930. https​://doi.org/10.1242/jeb.07104​3 (2012).
	71.	 Johnstone, C. P., Reina, R. D. & Lill, A. Interpreting indices of physiological stress in free-living vertebrates. J. Comp. Physiol. B 

182, 861–879. https​://doi.org/10.1007/s0036​0-012-0656-9 (2012).
	72.	 Müller, C., Jenni-Eiermann, S. & Jenni, L. Heterophils/Lymphocytes-ratio and circulating corticosterone do not indicate the same 

stress imposed on Eurasian kestrel nestlings. Funct. Ecol. 25, 566–576. https​://doi.org/10.1111/j.1365-2435.2010.01816​.x (2011).
	73.	 Oberkircher, M. C. & Smith Pagano, S. Seasonal variation in chronic stress and energetic condition in Gray Catbirds (Dumetella 

carolinensis) and Song Sparrows (Melospiza melodia). Auk 135, 83–90. https​://doi.org/10.1642/AUK-17-79.1 (2018).
	74.	 Roberts, M. L. et al. The effects of testosterone on immune function in quail selected for divergent plasma corticosterone response. 

J. Exp. Biol. 212, 3125–3131. https​://doi.org/10.1242/jeb.03072​6 (2009).
	75.	 Li, D. et al. Changes in phytohaemagglutinin skin-swelling responses during the breeding season in a multi-brooded species, the 

Eurasian tree parrow: do males with higher testosterone levels show stronger immune responses?. J. Ornithol. 156, 133–141. https​
://doi.org/10.1007/s1033​6-014-1104-2 (2015).

	76.	 Duffy, D. L. et al. Effects of testosterone on cell-mediated and humoral immunity in non-breeding adult European starlings. Behav. 
Ecol. 11, 654–662. https​://doi.org/10.1093/behec​o/11.6.654 (2000).

	77.	 Boyd, R. J., Kelly, T. R., MacDougall-Shackleton, S. A. & MacDougall-Shackleton, E. A. Alternative reproductive strategies in 
white-throated sparrows are associated with differences in parasite load following experimental infection. Biol. Lett. 14, 20180194. 
https​://doi.org/10.1098/rsbl.2018.0194 (2018).

	78.	 Folstad, I. & Karter, A. J. Parasites, bright males, and the immunocompetence handicap. Am. Nat. 139, 603–622. https​://doi.
org/10.1086/28534​6 (1992).

	79.	 Bourgeon, S. et al. Relationships between metabolic status, corticosterone secretion and maintenance of innate and adaptive 
humoral immunities in fasted re-fed Mallards. J. Exp. Biol. 213, 3810–3818. https​://doi.org/10.1242/jeb.04548​4 (2010).

	80.	 Cabrera-Martínez, L. V., Herrera, M. L. & Cruz-Neto, A. P. The energetic cost of mounting an immune response for Pallas’s long-
tongued bat (Glossophaga soricina). PeerJ 6, e4627. https​://doi.org/10.7717/peerj​.4627 (2018).

	81.	 Sheldon, B. C. & Verhulst, S. Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol. 
Evol. 11, 317–321. https​://doi.org/10.1016/0169-5347(96)10039​-2 (1996).

	82.	 Hanssen, S. A., Hasselquist, D., Folstad, I. & Erikstad, K. E. Cost of reproduction in a long-lived bird: incubation effort reduces 
immune function and future reproduction. Proc. R. Soc. B 272, 1039–1046. https​://doi.org/10.1098/rspb.2005.3057 (2005).

	83.	 Miller, M. R., White, A. & Boots, M. The evolution of parasites in response to tolerance in their hosts: the good, the bad, and 
apparent commensalism. Evolution 60, 945–956. https​://doi.org/10.1111/j.0014-3820.2006.tb011​73.x (2006).

	84.	 Medzhitov, R., Schneider, D. S. & Soares, M. P. Disease tolerance as a defense strategy. Science 335, 936–941. https​://doi.org/10.1126/
scien​ce.12149​35 (2012).

	85.	 Santiago-Quesada, F. et al. Secondary phytohaemagglutinin (PHA) swelling response is a good indicator of T-cell-mediated 
immunity in free-living birds. IBIS 157, 767–773. https​://doi.org/10.1111/ibi.12295​ (2015).

https://doi.org/10.1016/j.dci.2004.07.006
https://doi.org/10.18637/jss.v036.i03
https://doi.org/10.18637/jss.v036.i03
https://doi.org/10.3102/10769986006002107
https://doi.org/10.3102/10769986006002107
https://doi.org/10.1038/nature11631
https://doi.org/10.1080/10635150802422308
https://doi.org/10.1093/bioinformatics/btq228
https://doi.org/10.1093/bioinformatics/btq228
https://doi.org/10.1093/czoolo/61.6.959
https://doi.org/10.1093/bioinformatics/btg412
https://doi.org/10.1136/bmj.315.7109.629
https://doi.org/10.1136/bmj.315.7109.629
https://doi.org/10.1002/jrsm.11
https://doi.org/10.1002/jrsm.11
https://doi.org/10.1093/aobpla/plv119
https://doi.org/10.18637/jss.v033.i02
https://doi.org/10.1136/bmj.327.7414.557
https://doi.org/10.1071/ZO12123
https://doi.org/10.1007/s00300-019-02467-7
https://doi.org/10.4049/jimmunol.1401982
https://doi.org/10.1016/S0003-3472(89)80120-4
https://doi.org/10.1111/j.2007.0908-8857.03774.x
https://doi.org/10.1242/jeb.071043
https://doi.org/10.1007/s00360-012-0656-9
https://doi.org/10.1111/j.1365-2435.2010.01816.x
https://doi.org/10.1642/AUK-17-79.1
https://doi.org/10.1242/jeb.030726
https://doi.org/10.1007/s10336-014-1104-2
https://doi.org/10.1007/s10336-014-1104-2
https://doi.org/10.1093/beheco/11.6.654
https://doi.org/10.1098/rsbl.2018.0194
https://doi.org/10.1086/285346
https://doi.org/10.1086/285346
https://doi.org/10.1242/jeb.045484
https://doi.org/10.7717/peerj.4627
https://doi.org/10.1016/0169-5347(96)10039-2
https://doi.org/10.1098/rspb.2005.3057
https://doi.org/10.1111/j.0014-3820.2006.tb01173.x
https://doi.org/10.1126/science.1214935
https://doi.org/10.1126/science.1214935
https://doi.org/10.1111/ibi.12295


11

Vol.:(0123456789)

Scientific Reports |         (2021) 11:1349  | https://doi.org/10.1038/s41598-020-80030-9

www.nature.com/scientificreports/

	86.	 Moreno, J., de León, A., Fargallo, J. A. & Moreno, E. Breeding time, health and immune response in the chinstrap penguin Pygoscelis 
antarctica. Oecologia 115, 312–319. https​://doi.org/10.1007/s0044​20050​522 (1998).

	87.	 Zhao, Y. et al. Life-history dependent relationships between body condition and immunity, between immunity indices in male 
Eurasian tree sparrows. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 210, 7–13. https​://doi.org/10.1016/j.cbpa.2017.05.004 
(2017).

	88.	 Zuk, M. & Johnsen, T. S. Seasonal changes in the relationship between ornamentation and immune response in red jungle fowl. 
Proc. R. Soc. Lond. B. 265, 1631–1635. https​://doi.org/10.1098/rspb.1998.0481 (1998).

	89.	 Hasselquist, D. Comparative immunoecology in birds: hypotheses and tests. J. Ornithol. 148, 571–582. https​://doi.org/10.1007/
s1033​6-007-0201-x (2007).

Acknowledgements
We thank Arne Hegemann, Matthieu Guillemain and Andy Green for kindly providing additional data of their 
studies. Two anonymous reviewers’ comments helped us improving earlier versions of the manuscript. J.O.V. 
would like to thank Valdiviazo for their moral support. Funding was provided by the Comisión Nacional de 
Investigación Científica y Tecnológica (CONICYT), BECAS CHILE 72170569 to J.O.V; T.S. was funded by 
Royal Society Wolfson Merit Award (WM170050), T.S. and Á.Z.L. by the National Research, Development and 
Innovation Office of Hungary (ÉLVONAL KKP-126949, K-116310 to T.S., and OTKA K-113108 to Á.Z.L.); J.F. 
by MCI/AEI/FEDER, UE (PGC2018-095704-B-100), G.E. by the Polar Programme (Grant ALWPP.2016.030) of 
the Netherlands Organisation for Scientific Research, and N.H. by the China Scholarship Council.

Author contributions
J.O.V. collected the data, conducted the data analysis and wrote the paper. All authors contributed substantially 
to study design and revisions of the paper.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https​://doi.
org/10.1038/s4159​8-020-80030​-9.

Correspondence and requests for materials should be addressed to J.O.V.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2021

https://doi.org/10.1007/s004420050522
https://doi.org/10.1016/j.cbpa.2017.05.004
https://doi.org/10.1098/rspb.1998.0481
https://doi.org/10.1007/s10336-007-0201-x
https://doi.org/10.1007/s10336-007-0201-x
https://doi.org/10.1038/s41598-020-80030-9
https://doi.org/10.1038/s41598-020-80030-9
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Seasonal variation in sex-specific immunity in wild birds
	Materials and methods
	Literature search. 
	Immune variables. 
	White blood cells (WBC). 
	Estimates of immune response. 

	Statistical analysis. 
	Phylogenetic meta-analysis. 
	Generalised linear mixed models. 


	Results
	Sex biases in immunity and the effect of season (meta-analysis). 
	Effect of seasonal changes on males and females (GLMM analysis). 

	Discussion
	References
	Acknowledgements


