6,823 research outputs found

    The Plasma Interaction Experiment (PIX) description and test program

    Get PDF
    The plasma interaction experiment (PIX) is a battery powered preprogrammed auxiliary payload on the LANDSAT-C launch. This experiment is part of a larger program to investigate space plasma interactions with spacecraft surfaces and components. The varying plasma densities encountered during available telemetry coverage periods are deemed sufficient to determine first order interactions between the space plasma environment and the biased experimental surfaces. The specific objectives of the PIX flight experiment are to measure the plasma coupling current and the negative voltage breakdown characteristics of a solar array segment and a gold plated steel disk. Measurements will be made over a range of surface voltages up to plus or minus kilovolt. The orbital environment will provide a range of plasma densities. The experimental surfaces will be voltage biased in a preprogrammed step sequence to optimize the data returned for each plasma region and for the available telemetry coverage

    GADZOOKS! Antineutrino Spectroscopy with Large Water Cerenkov Detectors

    Full text link
    We propose modifying large water \v{C}erenkov detectors by the addition of 0.2% gadolinium trichloride, which is highly soluble, newly inexpensive, and transparent in solution. Since Gd has an enormous cross section for radiative neutron capture, with ∑Eγ=8\sum E_\gamma = 8 MeV, this would make neutrons visible for the first time in such detectors, allowing antineutrino tagging by the coincidence detection reaction νˉe+p→e++n\bar{\nu}_e + p \to e^+ + n (similarly for νˉμ\bar{\nu}_\mu). Taking Super-Kamiokande as a working example, dramatic consequences for reactor neutrino measurements, first observation of the diffuse supernova neutrino background, Galactic supernova detection, and other topics are discussed.Comment: 4 pages, 1 figure, submitted to Phys. Rev. Lett. Correspondence to [email protected], [email protected]

    Time-optimal path planning in dynamic flows using level set equations: realistic applications

    Get PDF
    The level set methodology for time-optimal path planning is employed to predict collision-free and fastest-time trajectories for swarms of underwater vehicles deployed in the Philippine Archipelago region. To simulate the multiscale ocean flows in this complex region, a data-assimilative primitive-equation ocean modeling system is employed with telescoping domains that are interconnected by implicit two-way nesting. These data-driven multiresolution simulations provide a realistic flow environment, including variable large-scale currents, strong jets, eddies, wind-driven currents, and tides. The properties and capabilities of the rigorous level set methodology are illustrated and assessed quantitatively for several vehicle types and mission scenarios. Feasibility studies of all-to-all broadcast missions, leading to minimal time transmission between source and receiver locations, are performed using a large number of vehicles. The results with gliders and faster propelled vehicles are compared. Reachability studies, i.e., determining the boundaries of regions that can be reached by vehicles for exploratory missions, are then exemplified and analyzed. Finally, the methodology is used to determine the optimal strategies for fastest-time pick up of deployed gliders by means of underway surface vessels or stationary platforms. The results highlight the complex effects of multiscale flows on the optimal paths, the need to utilize the ocean environment for more efficient autonomous missions, and the benefits of including ocean forecasts in the planning of time-optimal paths.United States. Office of Naval Research (Grant N00014-09-1-0676 (Science of Autonomy - A-MISSION))United States. Office of Naval Research (Grant N00014-07-1-0473 (PhilEx))United States. Office of Naval Research (Grant N00014-12-1-0944 (ONR6.2))United States. Office of Naval Research (Grant N00014-13-1-0518 (Multi-DA)

    Merging multiple-partial-depth data time series using objective empirical orthogonal function fitting

    Get PDF
    Author Posting. © IEEE, 2010. This article is posted here by permission of IEEE for personal use, not for redistribution. The definitive version was published in IEEE Journal of Oceanic Engineering 35 (2010): 710-721, doi:10.1109/JOE.2010.2052875.In this paper, a method for merging partial overlapping time series of ocean profiles into a single time series of profiles using empirical orthogonal function (EOF) decomposition with the objective analysis is presented. The method is used to handle internal waves passing two or more mooring locations from multiple directions, a situation where patterns of variability cannot be accounted for with a simple time lag. Data from one mooring are decomposed into linear combination of EOFs. Objective analysis using data from another mooring and these patterns is then used to build the necessary profile for merging the data, which is a linear combination of the EOFs. This method is applied to temperature data collected at a two vertical moorings in the 2006 New Jersey Shelf Shallow Water Experiment (SW06). Resulting profiles specify conditions for 35 days from sea surface to seafloor at a primary site and allow for reliable acoustic propagation modeling, mode decomposition, and beamforming.This work was supported by the U.S. Office of Naval Research (ONR) under Grants N00014-04-1-0146 and N00014-05-1- 0482, theONRPostdoctoral FellowshipAward under Grant N00014-08-1-0204, and by E. Livingston and T. Pawluskiewicz. The work of P. F. J. Lermusiaux and P. J. Haley was supported by the ONR under Grants N00014-07-1-1061, N00014-07-1-0501, and N00014-08-1-1097 to the Massachusetts Institute of Technology

    A Coupled-Mode Shallow-Water Model for Tidal Analysis: Internal Tide Reflection and Refraction by the Gulf Stream

    Get PDF
    A hydrostatic, coupled-mode, shallow-water model (CSW) is described and used to diagnose and simulate tidal dynamics in the greater Mid-Atlantic Bight region. The reduced-physics model incorporates realistic stratification and topography, internal tide forcing from a priori estimates of the surface tide, and advection terms that describe first-order interactions of internal tides with slowly varying mean flow and mean buoyancy fields and their respective shear. The model is validated via comparisons with semianalytic models and nonlinear primitive equation models in several idealized and realistic simulations that include internal tide interactions with topography and mean flows. Then, 24 simulations of internal tide generation and propagation in the greater Mid-Atlantic Bight region are used to diagnose significant internal tide interactions with the Gulf Stream. The simulations indicate that locally generated mode-one internal tides refract and/or reflect at the Gulf Stream. The redirected internal tides often reappear at the shelf break, where their onshore energy fluxes are intermittent (i.e., noncoherent with surface tide) because meanders in the Gulf Stream alter their precise location, phase, and amplitude. These results provide an explanation for anomalous onshore energy fluxes that were previously observed at the New Jersey shelf break and linked to the irregular generation of nonlinear internal waves.National Science Foundation (U.S.) (Grant OCE-1061160 (ShelfIT))National Science Foundation (U.S.) (Grant OCE-1060430)United States. Office of Naval Research (Grants N000 14-11-1-0701 (MURI- IODA))United States. Office of Naval Research (N00014-12-1-0944 (ONR6.2)

    Time-optimal path planning in dynamic flows using level set equations: theory and schemes

    Get PDF
    We develop an accurate partial differential equation-based methodology that predicts the time-optimal paths of autonomous vehicles navigating in any continuous, strong, and dynamic ocean currents, obviating the need for heuristics. The goal is to predict a sequence of steering directions so that vehicles can best utilize or avoid currents to minimize their travel time. Inspired by the level set method, we derive and demonstrate that a modified level set equation governs the time-optimal path in any continuous flow. We show that our algorithm is computationally efficient and apply it to a number of experiments. First, we validate our approach through a simple benchmark application in a Rankine vortex flow for which an analytical solution is available. Next, we apply our methodology to more complex, simulated flow fields such as unsteady double-gyre flows driven by wind stress and flows behind a circular island. These examples show that time-optimal paths for multiple vehicles can be planned even in the presence of complex flows in domains with obstacles. Finally, we present and support through illustrations several remarks that describe specific features of our methodology.United States. Office of Naval Research (Grant N00014-09-1-0676 (Science of Autonomy - A-MISSION))United States. Office of Naval Research (Grant N00014-12-1-0944 (ONR6.2))Natural Sciences and Engineering Research Council of Canada (Postgraduate Fellowship

    Increasing Obesity Odds Among Foreignborn New Yorkers are not Explained by Eating Out, Age at Arrival, or Duration of Residence: Results from NYC HANES 2004 and 2013/2014

    Full text link
    Background: Among the foreign-born in the United States (US) dietary acculturation and eating out may increase obesity risk. Using the 2004 (N = 1952) and 2013/14 (N = 1481) New York City (NYC) Health and Nutrition Examination Surveys, we compared for the foreign-born and US-born by survey year: 1) odds of obesity; 2) association between eating out and obesity and 3) effect of age at arrival and duration of residence among the foreign-born. Weighted logistic regression estimated odds of obesity. Results: Compared to the US-born, the foreign-born had lower odds of obesity in 2004, (aOR = 0.51 (95%CI 0.37– 0.70), P = Conclusions: Eating out does not explain increasing obesity odds among the foreign-born

    Genome-by-Trauma Exposure Interactions in Adults With Depression in the UK Biobank

    Get PDF
    IMPORTANCE: Self-reported trauma exposure has consistently been found to be a risk factor for major depressive disorder (MDD), and several studies have reported interactions with genetic liability. To date, most studies have examined gene-environment interactions with trauma exposure using genome-wide variants (single-nucleotide variations [SNVs]) or polygenic scores, both typically capturing less than 3% of phenotypic risk variance. OBJECTIVE: To reexamine genome-by-trauma interaction associations using genetic measures using all available genotyped data and thus, maximizing accounted variance. DESIGN, SETTING, AND PARTICIPANTS: The UK Biobank study was conducted from April 2007 to May 1, 2016 (follow-up mental health questionnaire). The current study used available cross-sectional genomic and trauma exposure data from UK Biobank. Participants who completed the mental health questionnaire and had available genetic, trauma experience, depressive symptoms, and/or neuroticism information were included. Data were analyzed from April 1 to August 30, 2021. EXPOSURES: Trauma and genome-by-trauma exposure interactions. MAIN OUTCOMES AND MEASURES: Measures of self-reported depression, neuroticism, and trauma exposure with whole-genome SNV data are available from the UK Biobank study. Here, a mixed-model statistical approach using genetic, trauma exposure, and genome-by-trauma exposure interaction similarity matrices was used to explore sources of variation in depression and neuroticism. RESULTS: Analyses were conducted on 148 129 participants (mean [SD] age, 56 [7] years) of which 76 995 were female (52.0%). The study approach estimated the heritability (SE) of MDD to be approximately 0.160 (0.016). Subtypes of self-reported trauma exposure (catastrophic, adult, childhood, and full trauma) accounted for a significant proportion of the variance of MDD, with heritability (SE) ranging from 0.056 (0.013) to 0.176 (0.025). The proportion of MDD risk variance accounted for by significant genome-by-trauma interaction revealed estimates (SD) ranging from 0.074 (0.006) to 0.201 (0.009). Results from sex-specific analyses found genome-by-trauma interaction variance estimates approximately 5-fold greater for MDD in male participants (0.441 [0.018]) than in female participants (0.086 [0.009]). CONCLUSIONS AND RELEVANCE: This cross-sectional study used an approach combining all genome-wide SNV data when exploring genome-by-trauma interactions in individuals with MDD; findings suggest that such interactions were associated with depression manifestation. Genome-by-trauma interaction accounts for greater trait variance in male individuals, which points to potential differences in depression etiology between the sexes. The methodology used in this study can be extrapolated to other environmental factors to identify modifiable risk environments and at-risk groups to target with interventions

    Issues and progress in the prediction of ocean submesoscale features and internal waves

    Get PDF
    Data-constrained dynamical ocean modeling for the purpose of detailed forecasting and prediction continues to evolve and improve in quality. Modeling methods and computational capabilities have each improved. The result is that mesoscale phenomena can be modeled with skill, given sufficient data. However, many submesoscale features are less well modeled and remain largely unpredicted from a deterministic event standpoint, and possibly also from a statistical property standpoint. A multi-institution project is underway with goals of uncovering more of the details of a few submesoscale processes, working toward better predictions of their occurrence and their variability. A further component of our project is application of the new ocean models to ocean acoustic modeling and prediction. This paper focuses on one portion of the ongoing work: Efforts to link nonhydrostatic-physics models of continental-shelf nonlinear internal wave evolution to data-driven regional models. Ocean front-related effects are also touched on.United States. Office of Naval Research (United States. Dept. of Defense. Multidisciplinary University Research Initiative (Ocean Acoustics Program Award N00014-11-1-0701))United States. Office of Naval Research (Grant N00014-12-1-0944)National Science Foundation (U.S.) (Grant OCE-1061160
    • …
    corecore