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Abstract—In this paper, a method for merging partial overlap-
ping time series of ocean profiles into a single time series of profiles
using empirical orthogonal function (EOF) decomposition with the
objective analysis is presented. The method is used to handle in-
ternal waves passing two or more mooring locations from mul-
tiple directions, a situation where patterns of variability cannot
be accounted for with a simple time lag. Data from one mooring
are decomposed into linear combination of EOFs. Objective anal-
ysis using data from another mooring and these patterns is then
used to build the necessary profile for merging the data, which is a
linear combination of the EOFs. This method is applied to temper-
ature data collected at a two vertical moorings in the 2006 New
Jersey Shelf Shallow Water Experiment (SW06). Resulting pro-
files specify conditions for 35 days from sea surface to seafloor at a
primary site and allow for reliable acoustic propagation modeling,
mode decomposition, and beamforming.

Index Terms—Empirical orthogonal functions (EOFs), Mid-At-
lantic Bight, Massachusetts Institute of Technology Multidis-
ciplinary Simulation, Estimation, and Assimilation System
(MIT-MSEAS) ocean modeling system, objective function fitting,
oceanographic data merging, 2006 Shallow Water Experiment
(SW06).

I. INTRODUCTION

I N oceanography, it is common for data at individual
mooring sites to span only a subsection of the entire water

column. A technique is presented here for merging time series
of such partial-depth profiles into a time series of profiles
intended to describe, as accurately as possible, conditions at a
single location. A spatial (depth) overlap in the data sets is a
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necessary criterion to apply the method. The resulting merged
profiles span the entire depth range sampled by the collection
of moorings (i.e., the union of the sets). The method can be
applied to the situation of internal waves passing over a group
of moorings from multiple directions. In the case of waves
moving in one direction, it may be possible to merge using a
simple time lag of the data. This is not possible in the case of
waves passing from many directions, overlapped in time.

The theory and mathematics behind the mooring data
merging application presented in this paper are well estab-
lished. The method uses empirical orthogonal function (EOF)
theory [1] to build basis function sets for fluctuations at one
location (mooring, in this case). These functions are then used
to consistently merge the information in that data set with data
from another location. The merging is done using methods of
objective function fitting [2], but slightly differs from previous
implementations. Data from two or more locations can be
merged, but in much of this paper the language is consistent
with merging two data sets. Although it is not presented in
this paper, the data sources can also be different types; for
example, one being in situ mooring data and another being
model simulation. The technique requires that each profile time
series that is to be EOF processed and then merged have an
overlap in depth with a primary data set. EOF methods have
the beneficial property that the reconstructed fields have the
same first- and second-order statistics as the original field,
improving the quality of the merged profiles. One advantage
of employing EOF analysis is that, if the time series is divided
into windows of various lengths, characteristics of the resulting
EOFs can provide insight into the nature of water-column
profile variation.

EOF theory has been widely applied to analysis of oceano-
graphic profile data. For example, LeBlanc and Middleton [3]
first applied EOF analysis to sound-speed data in the Atlantic
Ocean. Also, Newhall et al. [4] used a spatial EOF interpolation
to construct a 3-D sound-speed field for acoustic ray tracing
modeling. In addition to these applications to sound-speed data,
Duda and Rehmann [5] applied an EOF filter on their acoustic
Doppler current profiler (ADCP) data for the purpose of re-
ducing noise without losing vertical resolution. Multivariate
model-predicted time-dependent 3-D EOFs have also been
used to describe dominant uncertainties for data assimilation
[6]. In these studies, the entire data set under consideration is
used to build EOFs, which are then used to reconstruct a field.
In contrast, in the present work, only a portion of the total data
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set is used to build EOFs, and other data are used to construct
fields using those EOFs as basis functions.

Objective analysis [1], [7] and objective function fitting [2]
are commonly used in the natural sciences. These methods are
often used to find patterns of variation in sparse and/or noisy
data sets, sometime using EOFs as basis functions [2]. Maps
of fields that result from the procedure fill space, so the term
optimal interpolation has also been used for this. In this paper,
the objective analysis is used in slightly different way. Interpo-
lation is not the goal. Rather, the merging procedure first uses
data from one location to build basis functions (i.e., EOFs),
then uses independent new data from another location to find
the linear combination of basis functions that forms a profile
consistent with the new data. The merging procedure is not
a large departure from traditional usage. However, there are
some new aspects that form the major results reported here.
First, the statistics and EOFs are allowed to be time depen-
dent, as has been done in data assimilation context where the
governing partial differential equations are used to evolve these
EOFs [6], [8]–[10]. Here the EOFs are evolved by time-variable
windowing, and a large part of the effort involves the analysis
of changing EOF sets, and how to determine the time scales of
data windowing used in the analysis.

Acoustic propagation prediction is one discipline that re-
quires full-depth profiles, namely, of sound speed. After an
explanation of the method, its application is illustrated by
generating temperature profiles using data collected in summer
2006 during a large multidisciplinary project, the 2006 New
Jersey Shelf Shallow Water Experiment (SW06) [11]. The
merged temperature profiles are then joined with other salinity
information to form full-depth sound-speed profiles.

This paper is organized as follows. In Section II, the merging
method is described in detail and compared with a related
method [2]. Section III shows SW06 temperature data merging
and an analysis of error. Section IV briefly examines how the
merged temperature profiles, converted to sound speed, im-
prove acoustic navigation system performance. Sections V and
VI have discussions, conclusions, and suggestions for future
work.

II. METHOD

The merging method is described here. A basic requirement
for the method to be appropriate is that water-column vari-
ability is caused by passing features whose signature can be
represented by empirical fundamental functions derived from
the first- and second-order statistics. In ocean acoustic studies,
these features are often internal waves, with time scales of a
few minutes to a few hours. For data source moorings only
a few hundred meters apart, the statistics should be identical
(stationarity holds). Hence, the empirical fundamental func-
tions derived from one mooring data set are applicable to
representing the water-column variability at the other mooring
location. Another important underlying assumption is that the
local fundamental functions vary with a slow time scale of order
tens of minutes, and so they can be efficiently and sufficiently
estimated within a finite time window.

A. Description

In this merging method, samples from a primary data set,
which covers the majority of the water column and remains in-
tact, are augmented using the secondary data set that covers an
additional portion of the water column. The remaining descrip-
tion of this method assumes a single secondary data set, but
more than one secondary data set can be used. In principle, the
procedure can be extended to multivariate fields and higher spa-
tial dimensions.

The first step of this merging method is to determine the time-
dependent first- and second-order statistics of the secondary
data series , where the column vector consists of the
sensor depths and the total number of the secondary data sensors
is . This computation can be done by continuously moving a
time window over the entire data period. This moving window
processing yields a series of data averages (the first-order sta-
tistics) and a series of data covariance matrices (the
second-order statistics) . To determine the needed pa-
rameterization of the secondary-data variability, EOF analysis is
performed within time windows centered at each analysis time
. At each step of the windowing process, a set of eigenvectors

is derived from the corresponding covariance matrix by solving
the eigenvalue problem

(1)

where the time variable is dropped for the purpose of notation
simplification and will be done in the following matrix equa-
tions. In the equation, the matrix contains the eigenvectors

in columns labeled to . These eigenvectors are the
empirical fundamental functions describing variability during
the time window, centered at time . These are also known as
the EOFs [1]. The diagonal matrix contains the eigenvalues,
and each eigenvalue is the data variance that the corresponding
EOF captures.

Before detailing the remaining procedures of augmenting the
primary data, we will define a useful depth notation. On the
secondary data mooring, the bottom sensors are overlapping
with the primary data mooring, and we use to denote the over-
lapped sensor depths. On the other hand, we use to indicate
other sensor depths where the primary data will be augmented.
With this depth notation, we can partition the covariance matrix
of secondary data into different depth ranges, i.e.,

(2)

where the element or is the autocovariance or
cross covariance between the secondary data in the depth ranges

and , and . Simple matrix manipulation also
shows that

(3)

where the subscribed indicates the portion of the EOFs in the
corresponding depth range ( or ).

With the secondary-data EOFs, ( to ), the exten-
sion profile (in the depth range ) can be determined by adding
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the mean profile of secondary data and a linear combination of
the EOFs

(4)

The coefficients will be determined, in a least square
sense, from the data in the overlapped depths of the two data
moorings . Note that the whole EOF set is used. The deter-
mination of should ideally take into account the fact that the
data variance each EOF captures varies with the EOF number;
in other words, the extended primary data should have the same
EOF spectrum as the secondary data. Clearly, a requirement for
this step is that the statistics (up to second order) of both data
sets are identical. If this is not true, then using this method to
extend the primary data profiles into the depth domain of sec-
ondary data is less justifiable.

To determine , we first linearly interpolate data from pri-
mary sensors that overlap with the secondary-data depth range
to the overlapped secondary-data sensor depths and name them

, where the size of the vector is , as defined pre-
viously. Indeed, this interpolation is a source of error, and the
error [ , where is the actual (un-
measured) primary data value at depths ] will be taken into
account when determining . By changing the depths of con-
cern in (4) and inserting , we then form a least square
fitting problem to solve for

(5)

where . This is an objective
function fitting process [2]. The number is smaller than
(the number of the overlapped sensors is smaller than the total
sensor number), and the system is thus underdetermined. Note
that only a portion of the EOFs in depths is used in this ob-
jective function fitting procedure.

To solve (5) for while accounting for the EOF energy/
variance spectrum and for the interpolation error/uncertainties

, we can form an objective function to be minimized

(6)

where is the column vector consisting of , is the EOF
eigenvalue matrix (note again that each eigenvalue is the data
variance that the corresponding EOF captures), and is the co-
variance matrix of the interpolation error . The first term in the
function is the weighted mean square of the EOF coefficients.
This is included to minimize the energy of the fitted solution.
The second term is the mean square error between the fitted field
and the true field. The matrix is essentially unknown, but it
can be estimated from the primary data difference within the
overlapped depth range; the simplest probability model one can
use is the zero-mean uniform probability function with a width
given by the data difference. The solution that minimizes the
objective function is the well-known tapered and weighted least
square solution [12] given by

(7)

where is the portion of the EOFs in depths , and is
the column vector of .

There is another way to write this estimator expression re-
lating to the best estimate and the data points . Using the
matrix inverse lemma, one can write

(8)

so that the final extension profile can be expressed as

(9)

where and are used. This
is the Gauss–Markov estimator for objective mapping [12], or
objective interpolation. Thus, the method we have chosen, al-
though explained here in terms of EOFs, for reasons to be ex-
plained later, is precisely this established method.

In general, there is no strict regulation for selecting the
weights used in the objective function (6) for the least squares
estimate of the EOF coefficients. However, choosing the two
special weights and recovers a rewritten version of the
Gauss–Markov estimator (9) as the achieved solution (7). While
it is true that one can directly use (9) to obtain the extension
profile of primary data set and skip the EOF decomposition
procedure, it is shown later in our data-analysis example that
there are advantages to employing EOFs to gain insight into the
nature of water-column profile variations. This is also done in
data assimilation context [6], [8].

In Section III, the method is applied to the SW06 data. The
resulting full-depth profiles are shown. In addition, the perfor-
mance of the method is tested by rebuilding secondary-data pro-
files directly from its partial data. In the remainder of this sec-
tion, we will compare our method with an objective function
fitting method examined by Davis [2].

B. Comparison With an Objective Function Fitting Method

Davis [2] analyzed an objective function fitting method for
spatial data smoothing or objective mapping. There is a close
relationship between the pioneered procedure by Davis and the
merging procedure proposed here. The difference is that our
method uses a tapered and weighted EOF approach, and Davis’
method uses a selected-EOF approach.

In the method outlined here, the augmentation of the primary
data set is formed using all EOFs. However, if only a subset of
the EOFs are used, of quantity , those with the highest
eigenvalue, typically, where is the number of secondary sen-
sors within the overlap, the least square problem is overdeter-
mined. This is in contrast to the underdetermined situation in the
originally posed problem (5). Removing the least square term of
EOF coefficients from the prior objective function forms a new
one, i.e.,

(10)

and yields a new least square solution for [12]

(11)

where consists of the highest order EOF coefficients, and
the matrix contains the highest order EOFs at depths
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TABLE I
ENVIRONMENTAL SENSORS ON THE ASIS SPAR BUOY AND TETHER

Fig. 1. Study area of SW06. The depth of each isobath line is labeled. A total of
62 moorings, denoted by gray dots, were deployed in a “T” geometry to create
an along-shelf path and an across-shelf path. The inner panel is a magnification
of the indicated black box and shows the detailed positions of the three moorings
whose data are used for full water-column profile estimation at the WHOI array
location.

. This is also the solution to the objective function fitting
problem posed by Davis [2]. Note that Davis’ solution [2, eq.
(13b)] is written in summation form, but is identical to (11).

Thus, we can see one connection between the presented solu-
tion (7) or (8), which is tapered and weighted, and that of Davis
(11). In our approach, the augmentation of the primary data set
uses the entire EOF set and weights the coefficients according
to the EOF spectrum. Davis’ work implements a lowpass filter
and effectively uses only the highest order fundamental func-
tions to model the smoothed field data, with unity weighting
of each. Because the ocean usually has a red spectrum, the first
few dominant fundamental functions usually capture most of the
signal information. Thus, for the objective mapping/smoothing
purpose, the selected-EOF approach is adequate. In our data
merging problem, we wish to retain abrupt transitions at the
thermocline and cannot tolerate smoothing. Hence, we should
keep the whole EOF set and the statistics intact, with the statis-
tics (the covariance matrix and the associated EOFs) containing
the desired information. Finally, we note that our approach can

be simply seen as the tapered generalization of that of Davis
[2], and the diagonal elements of the tapering matrix set how
much weight each EOF has in the final answer.

III. SW06 TEMPERATURE MOORING DATA MERGING

This section provides information about the data sources
used in an example application of the method, then the re-
sults, including an error analysis. The data to be merged are
from temperature sensors attached to a hydrophone vertical
line array (VLA) prepared and deployed by the Woods Hole
Oceanographic Institution (WHOI, Woods Hole, MA) during
SW06 [11], and from an air–sea interaction spar (ASIS) buoy
[13] and its tether prepared by the University of Miami (Miami,
FL). The WHOI VLA temperature data are primary, and the
ASIS temperature data are secondary. The positions of these
two moorings are shown in the inner panel of Fig. 1.

A. SW06 Temperature Mooring Data Sources

The primary mooring is the WHOI VLA. Nine temperature
sensors and one temperature/pressure sensor attached to this
array are used as primary data. These were retrieved at the end
of a 43-day SW06 experiment. Temperature was measured at
30-s intervals at the following depths: 13, 15, 19, 22, 26, 34, 41,
56, 71, and 78 m. Pressure was also measured at the uppermost
sensor. The top panel of Fig. 2 shows the WHOI VLA temper-
ature data. One can see that the mixed-layer structure was not
completely measured, especially when the mixed-layer thick-
ness was less than 13 m.

The secondary mooring is the ASIS. This spar buoy and its
tether were floating at the surface to measure air–water interac-
tion. The position was 385 m southwest of the WHOI VLA.
Five temperature sensors and two temperature/pressure sensors
were attached to the mooring in the upper 15 m of the water
column. See Table I for the nominal sensor depths, and the
second panel of Fig. 2 for the temperature data. These data over-
lapped the primary WHOI VLA data by two sensors

For the best possible depth profile reconstruction, it is impor-
tant to consider the water depth and the sensor array tilt because
both influence the sensor depths. The seafloor depth was esti-
mated using the shipboard echo sounder at the time of array de-
ployment. The tidal records registered on an SW06 wave gauge
are used to correct the echo sounder data. The resultant value is
nominally 78.8 m. A time series of tide-modulated water depths
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Fig. 2. WHOI VLA temperature data, ASIS temperature data, ENV#30 tem-
perature and salinity data and MSEAS ocean model simulations. The black
boxes indicate the data sources for the water temperatures and salinities; WHOI
VLA, ASIS buoy, and MSEAS ocean model are the temperature data sources,
and ENV#30 and MSEAS ocean model are the salinity data sources.

during the array operational period is calculated considering re-
solved tidal constituents of frequency at eight cycles per day
or less. The semidiurnal M2 tide dominates, with amplitude of
about 0.5 m (1 m peak to peak). A long-baseline navigation
study for the WHOI VLA [14] shows that the average tilt angle
of the array is only 1.5 , so the effect of mooring tilt on the
VLA sensor depths is minimal and it is thus neglected in this
data merging example. The tilt may be more significant for the
ASIS spar buoy and its tether. To take the buoy tilt into account,
the lowpass filtered pressure records (cutoff frequency eight cy-
cles per day), from two pressure sensors at nominal depths of 7
and 15 m, are used to adjust the sensor depths.

B. Data Merging and Results

The merging method presented in Section II is used to merge
the WHOI VLA (primary) and ASIS (secondary) temperature
data. A one-hour central boxcar window moving through the
entire data time series is used to determine the time series of
statistics (means and covariances) and of EOFs. The reason for
choosing a one-hour-long window is that it is longer in time
scale than the nonlinear internal waves, and longer in time scale
than the intermooring wave transit times, but short enough in
scale to expect reasonable stationarity.

Data merging results during the largest measured nonlinear
internal wave event of SW06 (on August 19th) are specifically

Fig. 3. Contour plots of the original ASIS buoy, WHOI VLA temperature data,
and the merged profiles during the largest SW06 internal wave event. The EOF
merging technique presented in this paper preserves the mixed layer structure
measured by the ASIS buoy in the merged profiles as can be seen in this figure.
Contour level increment is 1 in colors and 0.5 in lines. The bottom panel
shows the estimated error variance due to the interpolation error/uncertainties
in the overlapped depth range.

selected to be shown here. The temperature data from the VLA
and ASIS (top two panels of Fig. 3) indicate significant thermo-
cline displacements of order 25 m in this internal wave packet.
The merged temperature profiles are shown in the third panel
of Fig. 3. The results appear usable, but this is not sufficient
to judge the accuracy. A performance examination (error anal-
ysis) of the merging method over the entire experimental period
is presented in Section III-C, with additional information pro-
vided for this time period.

As explained, the time-dependent statistics of the ASIS data
are first calculated, and the resulting average profiles and EOF
sets are then used to extend the WHOI data. The left panels of
Fig. 4 show the time series of the first three ASIS data EOFs.
One can see that when the one-hour window reaches the in-
ternal waves (at the center time 10:35:00Z), the EOFs begin
to evolve. The data variance (measured in each window) also
starts to increase (see the upper right panel). The data variance
reaches its maximum when the center of the window is right at
the wave front.

The lower right panel of Fig. 4 shows the fraction of the data
variance each EOF captures. The fractions are time dependent,
as are the EOFs, illustrating the need for the moving window
processing and weighted-EOF approach. Coupling this informa-
tion with the EOF shape plots, one can visualize the depth dis-
tribution of the data variance. For example, at 11:15:00Z about
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Fig. 4. ASIS data EOFs during the August 19th wave event. Right panels show the statistics derived from a one-hour central windowed data. Left panels are linear
interpolation of the seven-point discrete EOFs, and the horizontal dashed lines are the sensor depths.

95% of the variance is captured by the first EOF, with the energy
distributed over the depth range 10–17 m. Note that the EOF
is closely associated with the data coherence structure, and the
EOF shape indicates that the lower two sensor data are corre-
lated with other sensors. Because of this correlation, it is pos-
sible to recover conditions at the top five ASIS sensor depths
from the deeper measurements.

C. Merging Performance

An important question that must be answered concerns the
reliability of the merging procedure. Here, three error analyses
are presented.

1) August 19 Wave Example: The mixed layer structure mea-
sured by the ASIS buoy appears reasonably captured and pre-
served in the merged profile example of Section III-B (Fig. 3).
A statistical analysis is performed here to quantify underlying
errors in the result. One source of error was identified in the
derivation: the process of data interpolation of primary data to
secondary sensors depths. The interpolation error is defined as

, where the hat indicates estimated
data value and the other value is the actual (unmeasured) pri-
mary data value at depth . With straightforward linear algebra,
it can be seen how these errors propagate to the merged profiles.

We first obtain the errors in the EOF coefficient estimates
that are caused by the interpolation error . The variance of

can be found using (7), , where is the variance
of error , and where (7) is written as . can be
further propagated to the merging error. Using (4), it is found

. Substitution yields the final equation for the
merging error variance

(12)

The lowest panel of Fig. 3 shows the detailed time-dependent
merging error variances (the diagonal terms of ) in the Au-
gust 19 wave event. The error estimates appear suitably small.
Significant errors are found around time 10:30:00Z. Examining
the EOF shape shown in Fig. 4 can explain this. The EOF vari-
ance fraction plot (the lower right panel of Fig. 4) shows about
90% of the variance in the first EOF, but at the time in question
this EOF shape is close to zero at the overlapped depths (unlike
at other times), indicating small data correlation between top
five and lower two sensors. Thus, the merging method cannot
be expected to work properly for 90% of data variability. How-
ever, because the method uses all EOFs with weights according
to its energy spectrum, it is still able to capture the other 10% of
variability.

2) Merging Errors Over the Entire Period: The expression
for the variance of merging errors (12) is applied to the entire
data set. The right panels of Fig. 5 show the time series of error
variance at three depths. The left panel shows that the merging
errors generally increase with depth. The variance time series
also indicates that the error variances during the period from
August 8th to August 12th have peak values greater than other
periods. This is because the maximum thermocline gradient is
well above the lower two ASIS sensors during that interval (see
the second panel of Fig. 2); in other words, there is not much sta-
tistical information about the thermocline variability contained
in the data from the lower two sensors. Analysis of EOF profiles
can also indicate this. (EOF profiles consistent with similar poor
performance appear at the initial time period of Fig. 4.)

Performance of the objective function fitting method of
Davis [2] is also shown. As described before, Davis’ method
is essentially a selected-EOF approach, unlike our tapered and
weighted-EOF approach. Fig. 6 shows the average profiles



716 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 35, NO. 4, OCTOBER 2010

Fig. 5. Merging error due to the interpolation errors/uncertainties in the overlapped depth range. The left panel is the average variance over the entire experimental
period. The right panels are variance time series at three depths, and the shaded bar indicates the time of the example shown in Figs. 3 and 4.

Fig. 6. Merging error comparison of the method presented in this paper (ta-
pered and weighted EOF) and the objective function fitting (OFF) method. The
�-axis (averaged variance) is in a logarithm scale.

of merging error produced by our method and the method of
Davis. One can see that the weighted-EOF approach performs
better than the selected-EOF approach for this upper ocean data
merging example.

3) ASIS Data Self-Test: The merging performance can also
be tested by considering data only from the secondary location
(the ASIS location in our example data set). To be more spe-
cific, the testing procedure is to compare measured secondary

Fig. 7. ASIS-data self-test results. The standard deviation of the temperature
mismatch at the sensor depths over the entire testing period from August 2nd to
August 24th is shown in the left panel. The standard deviation of five selected
isothermal height mismatch over the entire testing period is shown in the right
panel. The lines with circles are the true perturbations calculated from original
data minus moving averaged profiles (one-hour central boxcar window).

locations with profiles rebuilt using data from the lower two
secondary sensor locations. This is consistent with using
in place of in (4), continuing the process to find the EOF
coefficients . These then yield a result , which can then
be compared against the original for accuracy.

Fig. 7 shows on the left the standard deviations of the mis-
match time series and, for comparison, the larger
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Fig. 8. Isothermal height of 18 C of ASIS data (upper panel). Isothermal level mismatch in the ASIS-data self-test example (lower panel).

variances of the demeaned original time series. It also shows
on the right the standard deviations of isothermal heights esti-
mated from , and the standard deviations of the differences
between these heights and those estimated after the fitting pro-
cedure. The test shows that the profiles can be rebuilt reason-
ably accurately using only data from two lower end sensors,
at least for this data set. Fig. 8 shows the entire time series
of isothermal height mismatch, and shows in another panel the
18 C height time series which serves as a proxy for the depth
of maximum thermocline gradient. The mismatch magnitudes
are highest during the period from August 8th to August 12th,
when the maximum gradient zone is well above the lower two
sensors.

Finally, note that it is difficult to validate the assumption that
temperature fluctuations at the overlapping depths of the two
positions (WHOI VLA and ASIS in the SW06 example) are
simply spatial and time lagged versions of the same process,
as they would be for progressive waves with isotherm displace-
ment moving a speed through a uniform water
column [i.e., uniform over ]. This assumption of station-
arity becomes more reliable as the distance between the two po-
sitions approaches zero.

IV. USING SW06 MERGED TEMPERATURE FOR SOUND-SPEED

PROFILE RECONSTRUCTION

This section describes salinity data sources used to
convert the temperature profiles obtained in Section III

Fig. 9. Multiple sea surface data for the upper 5-m water column around the
WHOI VLA (5-km radius).

to sound-speed profiles using Chen and Millero’s formulation
[15]. The results are then shown.

A. Incorporating Salinity Information and Data-Assimilated
Ocean Model Simulations

The computation of sound speed requires , , and pressure.
Because no salinity sensors were attached to the WHOI VLA or
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Fig. 10. Full water-column sound-speed profiles resulting from merging multiple data sources at the WHOI VLA. Boxes identify areas of different temperature
data sources. The upper left box indicates the ASIS buoy data, the upper right one is the MSEAS ocean model results, and the lower big box is the WHOI VLA
data. The ENV#30 data are also used for incorporating salinity, along with some assistance from MSEAS ocean model results.

ASIS buoy, salinity is estimated using data from nearby sensor
suite. Environment mooring ENV#30 carried ten conductivity,
temperature, and pressure sensors, yielding and the rela-
tionships used to estimate from . This mooring was located
1530 m northwest of the WHOI VLA (Fig. 1). Measurements
were taken every 30 s at the following depths: 14, 16, 20, 25,
32, 39, 47, 56, 65, and 74 m. Images of the temperature and
salinity data at this site can be found in Fig. 2. The sensors, man-
ufactured by Sea-Bird Electronics (Bellevue, WA), compute
internally from temperature, conductivity, and pressure.

The relationships ( as a function of ) found from
ENV#30 data are employed to calculate from
for all sensors at the VLA location. This assumes similar water
masses at the two sites. This assumption is justified by the
short intermooring distance (Fig. 1) and by the similarity of
temperature fluctuations at the two sites (Fig. 2). A sequence
of curves at the ENV#30 mooring (all depths included) is
calculated with a moving time window (one hour in length, as
in the merging process).

Because there are no salinity data in the upper water
column on mooring ENV#30 (see Fig. 2), conductivity–tem-
perature–depth (CTD) cast data and shipboard sea surface
monitoring records within 5-km radius around the WHOI VLA
are used for generating curves to calculate from
the merged . See Fig. 9 for the available sea surface
measurements.

For a short time period after the removal of ENV#30
mooring, but before SW06 was complete, relationships
from regional model simulations were used. These were from
SW06 forecasts and/or hindcasts made with the oceanographic
modeling and assimilation schemes of the Massachusetts

Institute of Technology (MIT, Cambridge) Multidisciplinary
Simulation, Estimation, and Assimilation System (MSEAS)
[16]. This system included oceanographic primitive-equation
models [17] and tidal models [18] with data assimilation
and uncertainty prediction [8], [19]. The primitive-equation
model used here was a new free-surface version of the Harvard
Ocean Prediction System (HOPS) [20] completed at MIT.
The model featured a 3-km spatial resolution and saved
fields at one-hour intervals, but could not resolve the nonlinear
internal-wave field. The and model fields at the WHOI
array location are shown in the bottom panels of Fig. 2. Note
that these model simulations did not assimilate any of the SW06
mooring data utilized in this work. Note also that when no ship
was near the VLA before the removal of ENV#30, MSEAS
salinity information was also used for the depths where ship
CTD data were ordinarily used.

In the last few days of the WHOI VLA operation, after
recovery of the other moorings (no more ASIS buoy data avail-
able), the upper portion of the water column was thoroughly
mixed by a large tropical storm named Ernesto that passed over
the SW06 site on September 2nd. Since the nonlinear internal
waves during this time were still active, our data merging
strategy is to use the MSEAS ocean model and is threefold: 1)
since the upper portion of the water column was well mixed,
when the top of the thermocline was below the top VLA sensor
( 13 m), directly extrapolate the VLA temperature data to
the surface, 2) if the top of the thermocline was above the top
VLA sensor, extend to the surface using the MSEAS ocean
model averaged sea surface temperature, and 3) directly use the
predicted salinity from the MSEAS ocean model because there
were no conductivity measurements during this time.
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Fig. 11. Ray tracing comparison of the merged sound-speed profile (upper) and an extrapolated sound-speed profile (lower). The sound-speed profile at 12:00:00Z
on August 10th is used. The merged profile has correct mixed layer structure, but the extrapolated does not. As a result, four incorrect eigenrays are found in using
the incorrect extrapolated profile. The arrival time of each eigenray is summarized in Table II.

B. Final Sound-Speed Profiles and Improvements
of Ray Tracing Modeling

Sound-speed profiles were computed for the entire duration
of SW06 using the merged temperature profiles and the salinity
estimates described above. The final full water-column sound-
speed estimates are shown in Fig. 10. The overall performance
of this data merging approach on capturing the mixed layer
structure is good, and capturing mixed layer structure is essen-
tial for many acoustic modeling applications. An acoustic ray
tracing modeling example shown next illustrates that neglecting
detailed mixed layer structure will produce incorrect ray paths.

Accuracy in numerical modeling of sound passing through
the upper water column can be ensured with a better mixed
layer structure estimate. This is important for applications such
as long-baseline navigation or grazing-angle-dependent surface
and seafloor reflection or reverberation studies. Comparison of
ray paths generated using a merged profile and a linearly ex-
trapolated VLA profile which does not have correct mixed layer
structure illustrates this point (Fig. 11). A sound-speed profile
for a time period with no internal waves (12:00:00Z on August
10th) is chosen for this example. To mimic signals of the VLA
long-baseline array navigation system, a source mounted on the
bottom (acoustic interrogator) is placed 1 km away from a re-
ceiver 13 m below the sea surface. With the extrapolated mixed
layer structure, four incorrect eigenrays are found (bottom panel
of Fig. 11). The arrival time of each eigenray in both models is
summarized in Table II, and the same type of ray path is grouped

for comparison. An error in sensor position on the order of 20 m
will occur if one uses a simple extrapolated profile and incorrect
eigenrays for long-baseline navigation.

V. DISCUSSION

The most significant advantages of the EOF merging tech-
nique are that the mixed layer structures measured by the ASIS
buoy are well preserved in the merged profiles, and that the ar-
rival time differences of nonlinear internal waves at the WHOI
VLA and the ASIS buoy can be systematically and automati-
cally accounted for. The EOF technique is simpler than sliding
the ASIS data time series to match with the VLA data, which
would require determining the propagating speeds and direc-
tions of the hundreds of internal waves seen in the data. In ad-
dition, such sliding of the secondary data set could lead to dis-
continuities (field or derivatives), which would affect numerical
modeling of sound propagation. If a filter was then utilized to
smooth out these discontinuities, the more rapidly varying fields
(e.g., the internal waves) could be smoothed out.

The length of the moving time window used in the temper-
ature data merging process was decided empirically to be one
hour using iteration and examination of EOFs and merged pro-
files, particularly during nonlinear internal wave events. It was
found that the window should cover at least a few cycles of in-
ternal wave motion so that sufficient statistic information can
be obtained. If the window is too short, the scheme does not
properly track the motion of internal waves as they propagate
from one mooring to another. On the other hand, if the window



720 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 35, NO. 4, OCTOBER 2010

TABLE II
ACOUSTIC RAY TRACING ARRIVAL TIMES FOR DIFFERENT EIGENRAYS USING A MERGED SOUND-SPEED PROFILE AND AN EXTRAPOLATED SOUND-SPEED

PROFILE. THE EXACT RAY PATHS CAN BE SEEN IN FIG. 11. THE RAY PATH LABELS ARE DESIGNATED AS THE FOLLOWING: � INDICATES

A BOTTOM REFLECTION, � INDICATES A SURFACE REFRACTION, AND � INDICATES REFRACTION IN THE WATER COLUMN

is too long, the EOFs can be less than optimal for this proce-
dure and the merged profiles are observed to miss the detailed
water-column variability. Rigorous theoretical analysis of the
window length requires further investigation, but we think that
the internal wave statistics in the one-hour window length are
well correlated with the moorings used here.

In the data merging process reported here, the effect of buoy
tilt on the ASIS sensor depths is considered, but the motion of
the VLA and ENV#30 moorings is neglected because it is found
to be generally small [14]. However, the derived sound-speed
profiles might still have potential errors due to lack of exact
sensor depths on the VLA and ENV#30 moorings. This work
has carefully corrected the tidal effects on the nominal sensor
depths, but it did not correct for the exact mooring motion.
Long-baseline navigation on the VLA may provide us a guide-
line to judge the uncertainties of the final estimates. In general,
during periods when the array motion was greater than average
(in 25% of the time the tilt angle is greater than 1.5 , but in
less than 5% of the time it is greater than 2.5 ), the merged
data should be used with care. One should also notice that the
long-baseline navigation technique is coupled with sound-speed
estimates. Thus, it would be more proper to do simultaneous
array navigation and sound-speed estimation. However, this is
beyond the scope of this paper, and it is left for the future.

VI. CONCLUSION

Time-varying EOF-based methods to merge time-varying data
profiles from multiple sources into profiles indicative of condi-
tions at a single site have been presented. An application was pre-
sentedandstudied,using temperaturedata fromtwoSW06moor-
ings, a few hundred metersapart. Full water-column sound-speed
profile estimates during SW06 were obtained from these recon-
structed temperature profiles and salinity measurement from ei-
ther nearby mooring data or the MIT-MSEAS ocean model simu-
lations. Such profiles can be used for accurate acoustic modeling.
The data merging quality was examined for accuracy over a broad
time scale, from minutes to days.

The method explained here has general practicality, and its
advantages are summarized. It has been shown that the water

layer structure measured by one partial depth system can be ac-
curately preserved in the merged profiles at another location in
a spatially stationary region. The arrival time differences of in-
ternal waves at the two locations can be systematically and au-
tomatically adjusted without knowing exact internal wave prop-
agation speeds and directions. The merged profiles provide a
more complete oceanographic view of the local water-column
variability at the chosen location. The profiles have been used
in other acoustics propagation modeling endeavors and have im-
proved acoustic real data and model comparisons [21], [22].
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