7 research outputs found

    First protein affinity application of Cu2+-bound pure inorganic nanoflowers

    No full text
    *Önal, Burcu ( Aksaray, Yazar )Today, a new kind of materials is introduced to separation media day by day to increase the efficiency of the separation processes, and multiple-petalled nanostructured materials are one of them. In this study, new pure inorganic copper phosphate nanoflowers (pCP-NFs) were synthesized, and some environmental conditions affecting on binding mechanism with human serum albumin were evaluated via changing medium pH, temperature, initial human serum albumin (HSA) amount and salt concentrations. Before experimental studies, pCP-NFs were subjected to some characterization tests such as scanning electron microscopy, energy-dispersive X-ray, X-ray diffraction and Fourier transform infrared spectroscopy. Besides a lot of valuable instrumental data, some obtained experimental ones as follows: after Cu2+ ions attachment to pCP-NFs as ligand, maximum HSA adsorption capacity of obtained Cu2+-pCP-NFs was found as 225.7 mg/g with an initial concentration of 1.5 mg/mL at pH 7 and 25 degrees C. Langmuir and Freundlich adsorption equations were evaluated for determination of appropriate adsorption model in interaction, and Langmuir model found as the fittest one with a R-2 of 0.9949 was also reviewed to determine Gibbs free energy between HSA and Cu2+-pCP-NFs interaction

    First protein affinity application of Cu2+-bound pure inorganic nanoflowers

    No full text
    Today, a new kind of materials is introduced to separation media day by day to increase the efficiency of the separation processes, and multiple-petalled nanostructured materials are one of them. In this study, new pure inorganic copper phosphate nanoflowers (pCP-NFs) were synthesized, and some environmental conditions affecting on binding mechanism with human serum albumin were evaluated via changing medium pH, temperature, initial human serum albumin (HSA) amount and salt concentrations. Before experimental studies, pCP-NFs were subjected to some characterization tests such as scanning electron microscopy, energy-dispersive X-ray, X-ray diffraction and Fourier transform infrared spectroscopy. Besides a lot of valuable instrumental data, some obtained experimental ones as follows: after Cu2+ ions attachment to pCP-NFs as ligand, maximum HSA adsorption capacity of obtained Cu2+-pCP-NFs was found as 225.7 mg/g with an initial concentration of 1.5 mg/mL at pH 7 and 25 degrees C. Langmuir and Freundlich adsorption equations were evaluated for determination of appropriate adsorption model in interaction, and Langmuir model found as the fittest one with a R-2 of 0.9949 was also reviewed to determine Gibbs free energy between HSA and Cu2+-pCP-NFs interaction

    A new application of inorganic sorbent for biomolecules: IMAC practice of Fe3+-nano flowers for DNA separation

    No full text
    Selection of purification method and type of adsorbent has high significance for separation of a biomolecule like deoxyribonucleic acid (DNA). Nanoflowers are a newly improved class of adsorbent. Due to showing very structural similarity to plant flowers, they are named as nanoflowers. Herein, after synthesize of copper phosphate three hydrate nanoflowers [(Cu3(PO4)2.3H2O), CP-NFs], Fe3+ ions were attached to their surfaces. Obtained Fe3+-CP-NFs, before investigation of some adsorption parameters for DNA, they were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Some attained data from the results of adsorption experiments as follows: While maximum DNA adsorption on Fe3+-CP-NFs was found as an excellent value of 845.8 mg/g, nanoflowers without Fe3+ ions adsorbed DNA as only 25.3 mg/g. Optimum media conditions for DNA adsorption were observed at pH 7 and 25 °C with an initial concentration of 1.5 mg/mL DNA

    Dipeptide nanostructures: Synthesis, interactions, advantages and biomedical applications

    No full text
    Short peptides are important in the design of self-assembled materials due to their versatility and flexibility. Self-assembled dipeptides, a group of peptide nanostructures, have highly attractive uses in the field of biomedicine. Recently these materials have proved to be important nanostructures because of their biocompatibility, low-cost and simplicity of synthesis, functionality/easy tunability and nano dimensions. Although there are different studies on peptide and protein-based nanostructures, more information about self-assembled nanostructures for dipeptides is still required to discover the advantages, challenges, importance, synthesis, interactions, and applications. This review describes and discusses the self-assembled dipeptide nanostructures especially for biomedical applications

    Differences between Cu- and Fe-Cu nanoflowers in their interactions with fluorescent probes ANS and Fura-2 and proteins albumin and thrombin

    No full text
    Among nanomaterials, we can now distinguish a special class called nanoflowers (NFs). These new nanostructures have aroused the interest of scientists due to the topographic features of nanolayers, the special location which allows a higher surface-to-volume ratio compared to classical spherical nanoparticles, thereby significantly increasing the efficiency of surface reactions for nanoflowers. The main value of nanoflowers is their action as enzyme stabilizers. A protein stability is usually enhanced by immobilization on a nanoflower surface through charge affinity and covalent bonds. The possibility of their use in vivo in biocatalysis, biosensors and medicine has been also investigated. We now report on the synthesis of two different nanoflowers: Cu nanoflowers and Fe3+ attached Cu nanoflowers and their interaction with two fluorescent probes, anilino-1-naphthalenesulfonic acid (ANS) and Fura 2, and two proteins, human serum albumin (HSA) and thrombin. Nanoflowers did not bind ANS, but bind efficiently to Fura 2 and both proteins. Modification of Cu-NFs by Fe3+ leads to significant changes in their binding capacity to fluorescent probe Fura 2 and both proteins. Their ability to bind fluorescent probe Fura 2 increased eightfold, and their ability to bind HSA and thrombin increased five times. Regarding Fe3+-Cu-NFs, a difference in binding between HSA and thrombin was found that can be explained by their structural features. Our data indicate the possibility of using studied nanoflowers for sorption of fluorescent probes and proteins
    corecore