10,509 research outputs found
The bearable lightness of being
How are philosophical questions about what kinds of things there are to be understood and how are they to be answered? This paper defends broadly Fregean answers to these questions. Ontological categories-such as object, property, and relation-are explained in terms of a prior logical categorization of expressions, as singular terms, predicates of varying degree and level, etc. Questions about what kinds of object, property, etc., there are are, on this approach, reduce to questions about truth and logical form: for example, the question whether there are numbers is the question whether there are true atomic statements in which expressions function as singular terms which, if they have reference at all, stand for numbers, and the question whether there are properties of a given type is a question about whether there are meaningful predicates of an appropriate degree and level. This approach is defended against the objection that it must be wrong because makes what there depend on us or our language. Some problems confronting the Fregean approach-including Frege's notorious paradox of the concept horse-are addressed. It is argued that the approach results in a modest and sober deflationary understanding of ontological commitments
Quantum Monte Carlo calculations of neutron-alpha scattering
We describe a new method to treat low-energy scattering problems in
few-nucleon systems, and we apply it to the five-body case of neutron-alpha
scattering. The method allows precise calculations of low-lying resonances and
their widths. We find that a good three-nucleon interaction is crucial to
obtain an accurate description of neutron-alpha scattering.Comment: 4 pages, 2 figures, submitted to Physical Review Letter
Atom in a coherently controlled squeezed vacuum
A broadband squeezed vacuum photon field is characterized by a complex
squeezing function. We show that by controlling the wavelength dependence of
its phase it is possible to change the dynamics of the atomic polarization
interacting with the squeezed vacuum. Such a phase modulation effectively
produces a finite range temporal interaction kernel between the two quadratures
of the atomic polarization yielding the change in the decay rates as well as
the appearance of additional oscillation frequencies. We show that decay rates
slower than the spontaneous decay rate can be achieved even for a squeezed bath
in the classic regime. For linear and quadratic phase modulations the power
spectrum of the scattered light exhibits narrowing of the central peak due to
the modified decay rates. For strong phase modulations side lobes appear
symmetrically around the central peak reflecting additional oscillation
frequencies.Comment: 4 pages, 4 figure
The environment and host haloes of the brightest z~6 Lyman-break galaxies
By studying the large-scale structure of the bright high-redshift Lyman-break
galaxy (LBG) population it is possible to gain an insight into the role of
environment in galaxy formation physics in the early Universe. We measure the
clustering of a sample of bright (-22.7<M_UV<-21.125) LBGs at z~6 and use a
halo occupation distribution (HOD) model to measure their typical halo masses.
We find that the clustering amplitude and corresponding HOD fits suggests that
these sources are highly biased (b~8) objects in the densest regions of the
high-redshift Universe. Coupled with the observed rapid evolution of the number
density of these objects, our results suggest that the shape of high luminosity
end of the luminosity function is related to feedback processes or dust
obscuration in the early Universe - as opposed to a scenario where these
sources are predominantly rare instances of the much more numerous M_UV ~ -19
population of galaxies caught in a particularly vigorous period of star
formation. There is a slight tension between the number densities and
clustering measurements, which we interpret this as a signal that a refinement
of the model halo bias relation at high redshifts or the incorporation of
quasi-linear effects may be needed for future attempts at modelling the
clustering and number counts. Finally, the difference in number density between
the fields (UltraVISTA has a surface density ~1.8 times greater than UDS) is
shown to be consistent with the cosmic variance implied by the clustering
measurements.Comment: 19 pages, 8 figures, accepted MNRAS 23rd March 201
The clustering and bias of radio-selected AGN and star-forming galaxies in the COSMOS field
Dark matter haloes in which galaxies reside are likely to have a significant
impact on their evolution. We investigate the link between dark matter haloes
and their constituent galaxies by measuring the angular two-point correlation
function of radio sources, using recently released 3 GHz imaging over $\sim 2 \
\mathrm{deg}^2z<1b = 1.5
^{+0.1}_{-0.2}z=0.62b = 2.1\pm 0.2b =
2.9 \pm 0.3b = 1.8^{+0.4}_{-0.5}z \sim 0.7M_{h} \sim 3-4
\times 10^{13}h^{-1}_{\odot}M_{h} \sim 1-2 \times
10^{13}h^{-1}_{\odot}z \ge 1z<1$.Comment: 20 pages, 10 figures, 1 table, accepted by MNRA
Stabilizing unstable periodic orbits in the Lorenz equations using time-delayed feedback control
For many years it was believed that an unstable periodic orbit with an odd
number of real Floquet multipliers greater than unity cannot be stabilized by
the time-delayed feedback control mechanism of Pyragus. A recent paper by
Fiedler et al uses the normal form of a subcritical Hopf bifurcation to give a
counterexample to this theorem. Using the Lorenz equations as an example, we
demonstrate that the stabilization mechanism identified by Fiedler et al for
the Hopf normal form can also apply to unstable periodic orbits created by
subcritical Hopf bifurcations in higher-dimensional dynamical systems. Our
analysis focuses on a particular codimension-two bifurcation that captures the
stabilization mechanism in the Hopf normal form example, and we show that the
same codimension-two bifurcation is present in the Lorenz equations with
appropriately chosen Pyragus-type time-delayed feedback. This example suggests
a possible strategy for choosing the feedback gain matrix in Pyragus control of
unstable periodic orbits that arise from a subcritical Hopf bifurcation of a
stable equilibrium. In particular, our choice of feedback gain matrix is
informed by the Fiedler et al example, and it works over a broad range of
parameters, despite the fact that a center-manifold reduction of the
higher-dimensional problem does not lead to their model problem.Comment: 21 pages, 8 figures, to appear in PR
Measurements at low energies of the polarization-transfer coefficient Kyy' for the reaction 3H(p,n)3He at 0 degrees
Measurements of the transverse polarization coefficient Kyy' for the reaction
3H(p,n)3He are reported for outgoing neutron energies of 1.94, 5.21, and 5.81
MeV. This reaction is important both as a source of polarized neutrons for
nuclear physics experiments, and as a test of theoretical descriptions of the
nuclear four-body system. Comparison is made to previous measurements,
confirming the 3H(p,n)3He reaction can be used as a polarized neutron source
with the polarization known to an accuracy of approximately 5%. Comparison to
R-matrix theory suggests that the sign of the 3F3 phase-shift parameter is
incorrect. Changing the sign of this parameter dramatically improves the
agreement between theory and experiment.Comment: 12 pages, RevTeX, 5 eps figures, submitted to Phys. Rev.
- …