98 research outputs found

    The digital scribe.

    Full text link
    Current generation electronic health records suffer a number of problems that make them inefficient and associated with poor clinical satisfaction. Digital scribes or intelligent documentation support systems, take advantage of advances in speech recognition, natural language processing and artificial intelligence, to automate the clinical documentation task currently conducted by humans. Whilst in their infancy, digital scribes are likely to evolve through three broad stages. Human led systems task clinicians with creating documentation, but provide tools to make the task simpler and more effective, for example with dictation support, semantic checking and templates. Mixed-initiative systems are delegated part of the documentation task, converting the conversations in a clinical encounter into summaries suitable for the electronic record. Computer-led systems are delegated full control of documentation and only request human interaction when exceptions are encountered. Intelligent clinical environments permit such augmented clinical encounters to occur in a fully digitised space where the environment becomes the computer. Data from clinical instruments can be automatically transmitted, interpreted using AI and entered directly into the record. Digital scribes raise many issues for clinical practice, including new patient safety risks. Automation bias may see clinicians automatically accept scribe documents without checking. The electronic record also shifts from a human created summary of events to potentially a full audio, video and sensor record of the clinical encounter. Digital scribes promisingly offer a gateway into the clinical workflow for more advanced support for diagnostic, prognostic and therapeutic tasks

    Pre-stress states and controllability of spatial cable-driven mechanisms

    Get PDF
    The work has been supported by the Czech Science Foundation project 20-21893S "Mechatronic tensegrities for energy efficient light robots" and partly by the project SGS22/150/OHK2/3T/12 “Mechatronics and adaptronics 2022” of the Czech Technical University in Pragu

    Raising Core Equity Capital for Community Development Banks - A New Capital Model

    Get PDF

    Indivo: a personally controlled health record for health information exchange and communication

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Personally controlled health records (PCHRs), a subset of personal health records (PHRs), enable a patient to assemble, maintain and manage a secure copy of his or her medical data. Indivo (formerly PING) is an open source, open standards PCHR with an open application programming interface (API).</p> <p>Results</p> <p>We describe how the PCHR platform can provide standard building blocks for networked PHR applications. Indivo allows the ready integration of diverse sources of medical data under a patient's control through the use of standards-based communication protocols and APIs for connecting PCHRs to existing and future health information systems.</p> <p>Conclusion</p> <p>The strict and transparent personal control model is designed to encourage widespread participation by patients, healthcare providers and institutions, thus creating the ecosystem for development of innovative, consumer-focused healthcare applications.</p

    Top 10 Blockchain Predictions for the (Near) Future of Healthcare

    Get PDF
    To review blockchain lessons learned in 2018 and near-future predictions for blockchain in healthcare, Blockchain in Healthcare Today (BHTY) asked the world's blockchain in healthcare experts to share their insights. Here, our internationally-renowned BHTY peer-review board discusses their major predictions. Based on their responses, presented in detail below, ten major themes (Table) for the future of blockchain in healthcare will emerge over the 12 months

    The Morningside Initiative: Collaborative Development of a Knowledge Repository to Accelerate Adoption of Clinical Decision Support

    Get PDF
    The Morningside Initiative is a public-private activity that has evolved from an August, 2007, meeting at the Morningside Inn, in Frederick, MD, sponsored by the Telemedicine and Advanced Technology Research Center (TATRC) of the US Army Medical Research Materiel Command. Participants were subject matter experts in clinical decision support (CDS) and included representatives from the Department of Defense, Veterans Health Administration, Kaiser Permanente, Partners Healthcare System, Henry Ford Health System, Arizona State University, and the American Medical Informatics Association (AMIA). The Morningside Initiative was convened in response to the AMIA Roadmap for National Action on Clinical Decision Support and on the basis of other considerations and experiences of the participants. Its formation was the unanimous recommendation of participants at the 2007 meeting which called for creating a shared repository of executable knowledge for diverse health care organizations and practices, as well as health care system vendors. The rationale is based on the recognition that sharing of clinical knowledge needed for CDS across organizations is currently virtually non-existent, and that, given the considerable investment needed for creating, maintaining and updating authoritative knowledge, which only larger organizations have been able to undertake, this is an impediment to widespread adoption and use of CDS. The Morningside Initiative intends to develop and refine (1) an organizational framework, (2) a technical approach, and (3) CDS content acquisition and management processes for sharing CDS knowledge content, tools, and experience that will scale with growing numbers of participants and can be expanded in scope of content and capabilities. Intermountain Healthcare joined the initial set of participants shortly after its formation. The efforts of the Morningside Initiative are intended to serve as the basis for a series of next steps in a national agenda for CDS. It is based on the belief that sharing of knowledge can be highly effective as is the case in other competitive domains such as genomics. Participants in the Morningside Initiative believe that a coordinated effort between the private and public sectors is needed to accomplish this goal and that a small number of highly visible and respected health care organizations in the public and private sector can lead by example. Ultimately, a future collaborative knowledge sharing organization must have a sustainable long-term business model for financial support

    Semantically Secure Anonymity: Foundations of Re-encryption

    Get PDF
    The notion of universal re-encryption is an established primitive used in the design of many anonymity protocols. It allows anyone to randomize a ciphertext without changing its size, without first decrypting it, and without knowing who the receiver is (i.e., not knowing the public key used to create it). By design it prevents the randomized ciphertext from being correlated with the original ciphertext. We revisit and analyze the security foundation of universal re-encryption and show a subtlety in it, namely, that it does not require that the encryption function achieve key anonymity. Recall that the encryption function is different from the re-encryption function. We demonstrate this subtlety by constructing a cryptosystem that satisfies the established definition of a universal cryptosystem but that has an encryption function that does not achieve key anonymity, thereby instantiating the gap in the definition of security of universal re-encryption. We note that the gap in the definition carries over to a set of applications that rely on universal re-encryption, applications in the original paper on universal re-encryption and also follow-on work. This shows that the original definition needs to be corrected and it shows that it had a knock-on effect that negatively impacted security in later work. We then introduce a new definition that includes the properties that are needed for a re-encryption cryptosystem to achieve key anonymity in both the encryption function and the re-encryption function, building on Goldwasser and Micali\u27s semantic security and the original key anonymity notion of Bellare, Boldyreva, Desai, and Pointcheval. Omitting any of the properties in our definition leads to a problem. We also introduce a new generalization of the Decision Diffie-Hellman (DDH) random self-reduction and use it, in turn, to prove that the original ElGamal-based universal cryptosystem of Golle et al is secure under our revised security definition. We apply our new DDH reduction technique to give the first proof in the standard model that ElGamal-based incomparable public keys achieve key anonymity under DDH. We present a novel secure Forward-Anonymous Batch Mix as a new application
    • …
    corecore