97 research outputs found

    Development and application of a SYBR Green RT-PCR for first line screening and quantification of porcine sapovirus infection

    Get PDF
    BACKGROUND: Sapoviruses are single stranded positive sense RNA viruses belonging to the family Caliciviridae. The virus is detected in different species including the human and the porcine species as an enteric pathogen causing asymptomatic to symptomatic enteritis. In this study, we report the development of a rapid real time qRT-PCR based on SYBR Green chemistry for the diagnosis of porcine sapovirus infection in swine. RESULTS: The method allows the detection of porcine sapoviruses and the quantification of the genomic copies present in stool samples. During its development, the diagnostic tool showed good correlation compared with the gold standard conventional RT-PCR and was ten-fold more sensitive. When the method was applied to field samples, porcine noroviruses from genogroup 2 genotype 11b were also detected. The method was also applied to swine samples from the Netherlands that were positive for PoSaV infection. Phylogenetic results obtained from the samples showed that PoSaV sequences were genetically related to the currently described genogroup III, to the proposed genogroup VII and also to the MI-QW19 sequence (close to the human SaV sequences). CONCLUSIONS: A rapid, sensitive, and reliable diagnosis method was developed for porcine sapovirus diagnosis. It correlated with the gold standard conventional RT-PCR. Specificity was good apart for genogroup 2 genotype 11b porcine noroviruses. As a first line screening diagnosis method, it allows a quicker and easier decision on doubtful samples

    Clinical and Pathological Findings in SARS-CoV-2 Disease Outbreaks in Farmed Mink (Neovison vison)

    Get PDF
    SARS-CoV-2, the causative agent of COVID-19, caused respiratory disease outbreaks with increased mortality in 4 mink farms in the Netherlands. The most striking postmortem finding was an acute interstitial pneumonia, which was found in nearly all examined mink that died at the peak of the outbreaks. Acute alveolar damage was a consistent histopathological finding in mink that died with pneumonia. SARS-CoV-2 infections were confirmed by detection of viral RNA in throat swabs and by immunohistochemical detection of viral antigen in nasal conchae, trachea, and lung. Clinically, the outbreaks lasted for about 4 weeks but some animals were still polymerase chain reaction–positive for SARS-CoV-2 in throat swabs after clinical signs had disappeared. This is the first report of the clinical and pathological characteristics of SARS-CoV-2 outbreaks in mink farms

    Hepatitis E Virus in Pork Liver Sausage, France

    Get PDF
    We investigated viability of hepatitis E virus (HEV) identified in contaminated pork liver sausages obtained from France. HEV replication was demonstrated in 1 of 4 samples by using a 3-dimensional cell culture system. The risk for human infection with HEV by consumption of these sausages should be considered to be high

    Monitoring Wind-Borne Particle Matter Entering Poultry Farms via the Air-Inlet: Highly Pathogenic Avian Influenza Virus and Other Pathogens Risk

    Get PDF
    Wind-supported transport of particle matter (PM) contaminated with excreta from highly pathogenic avian influenza virus (HPAIv)-infected wild birds may be a HPAIv-introduction pathway, which may explain infections in indoor-housed poultry. The primary objective of our study was therefore to measure the nature and quantity of PM entering poultry houses via air-inlets. The air-inlets of two recently HPAIv-infected poultry farms (a broiler farm and a layer farm) were equipped with mosquito-net collection bags. PM was harvested every 5 days for 25 days. Video-camera monitoring registered wild bird visits. PM was tested for avian influenza viruses (AIV), Campylobacter and Salmonella with PCR. Insects, predominantly mosquitoes, were tested for AIV, West Nile, Usutu and Schmallenberg virus. A considerable number of mosquitoes and small PM amounts entered the air-inlets, mostly cobweb and plant material, but no wild bird feathers. Substantial variation in PM entering between air-inlets existed. In stormy periods, significantly larger PM amounts may enter wind-directed air-inlets. PM samples were AIV and Salmonella negative and insect samples were negative for all viruses and bacteria, but several broiler and layer farm PM samples tested Campylobacter positive. Regular wild (water) bird visits were observed near to the poultry houses. Air-borne PM and insects-potentially contaminated with HPAIv or other pathogens-can enter poultry air-inlets. Implementation of measures limiting this potential introduction route are recommended

    First Isolation of Hepatitis E Virus Genotype 4 in Europe through Swine Surveillance in the Netherlands and Belgium

    Get PDF
    Hepatitis E virus (HEV) genotypes 3 and 4 are a cause of human hepatitis and swine are considered the main reservoir. To study the HEV prevalence and characterize circulating HEV strains, fecal samples from swine in the Netherlands and Belgium were tested by RT-PCR. HEV prevalence in swine was 7–15%. The Dutch strains were characterized as genotype 3, subgroups 3a, 3c and 3f, closely related to sequences found in humans and swine earlier. The HEV strains found in Belgium belonged to genotypes 3f and 4b. The HEV genotype 4 strain was the first ever reported in swine in Europe and an experimental infection in pigs was performed to isolate the virus. The genotype 4 strain readily infected piglets and caused fever and virus shedding. Since HEV4 infections have been reported to run a more severe clinical course in humans this observation may have public health implications

    Adaptation, spread and transmission of SARS-CoV-2 in farmed minks and associated humans in the Netherlands

    Get PDF
    In the first wave of the COVID-19 pandemic (April 2020), SARS-CoV-2 was detected in farmed minks and genomic sequencing was performed on mink farms and farm personnel. Here, we describe the outbreak and use sequence data with Bayesian phylodynamic methods to explore SARS-CoV-2 transmission in minks and humans on farms. High number of farm infections (68/126) in minks and farm workers (>50% of farms) were detected, with limited community spread. Three of five initial introductions of SARS-CoV-2 led to subsequent spread between mink farms until November 2020. Viruses belonging to the largest cluster acquired an amino acid substitution in the receptor binding domain of the Spike protein (position 486), evolved faster and spread longer and more widely. Movement of people and distance between farms were statistically significant predictors of virus dispersal between farms. Our study provides novel insights into SARS-CoV-2 transmission between mink farms and highlights the importance of combining genetic information with epidemiological information when investigating outbreaks at the animal-human interface
    corecore