16 research outputs found

    Effect of Hyperglycemia on Gene Expression during Early Organogenesis in Mice

    Get PDF
    BACKGROUND: Cardiovascular and neural malformations are common sequels of diabetic pregnancies, but the underlying molecular mechanisms remain unknown. We hypothesized that maternal hyperglycemia would affect the embryos most shortly after the glucose-sensitive time window at embryonic day (ED) 7.5 in mice. METHODS: Mice were made diabetic with streptozotocin, treated with slow-release insulin implants and mated. Pregnancy aggravated hyperglycemia. Gene expression profiles were determined in ED8.5 and ED9.5 embryos from diabetic and control mice using Serial Analysis of Gene Expression and deep sequencing. RESULTS: Maternal hyperglycemia induced differential regulation of 1,024 and 2,148 unique functional genes on ED8.5 and ED9.5, respectively, mostly in downward direction. Pathway analysis showed that ED8.5 embryos suffered mainly from impaired cell proliferation, and ED9.5 embryos from impaired cytoskeletal remodeling and oxidative phosphorylation (all P ≤ E-5). A query of the Mouse Genome Database showed that 20-25% of the differentially expressed genes were caused by cardiovascular and/or neural malformations, if deficient. Despite high glucose levels in embryos with maternal hyperglycemia and a ~150-fold higher rate of ATP production from glycolysis than from oxidative phosphorylation on ED9.5, ATP production from both glycolysis and oxidative phosphorylation was reduced to ~70% of controls, implying a shortage of energy production in hyperglycemic embryos. CONCLUSION: Maternal hyperglycemia suppressed cell proliferation during gastrulation and cytoskeletal remodeling during early organogenesis. 20-25% of the genes that were differentially regulated by hyperglycemia were associated with relevant congenital malformations. Unexpectedly, maternal hyperglycemia also endangered the energy supply of the embryo by suppressing its glycolytic capacity

    Maternal diabetes causes developmental delay and death in early-somite mouse embryos

    Get PDF
    Maternal diabetes causes congenital malformations and delays embryonic growth in the offspring. We investigated effects of maternal diabetes on mouse embryos during gastrulation and early organogenesis (ED7.5-11.5). Female mice were made diabetic with streptozotocin, treated with controlled-release insulin implants, and mated. Maternal blood glucose concentrations increased up to embryonic day (ED) 8.5. Maternal hyperglycemia induced severe growth retardation (approx.1 day) in 53% of the embryos on ED8.5, death in most of these embryos on ED9.5, and the termination of pregnancy on ED10.5 in litters with >20% dead embryos. Due to this selection, developmental delays and reduction in litter size were no longer observed thereafter in diabetic pregnancies. Male and female embryos were equally sensitive. High-throughput mRNA sequencing and pathway analysis of differentially expressed genes showed that retarded embryos failed to mount the adaptive suppression of gene expression that characterized non-retarded embryos (cell proliferation, cytoskeletal remodeling, oxidative phosphorylation). We conclude that failure of perigastrulation embryos of diabetic mothers to grow and survive is associated with their failure to shut down pathways that are strongly down-regulated in otherwise similar non-retarded embryos. Embryos that survive the early and generalized adverse effect of maternal diabetes, therefore, appear the subset in which malformations become manifest

    Integrative Transkingdom Analysis of the Gut Microbiome in Antibiotic Perturbation and Critical Illness

    Get PDF
    cited By 2Bacterial microbiota play a critical role in mediating local and systemic immunity, and shifts in these microbial communities have been linked to impaired outcomes in critical illness. Emerging data indicate that other intestinal organisms, including bacteriophages, viruses of eukaryotes, fungi, and protozoa, are closely interlinked with the bacterial microbiota and their host, yet their collective role during antibiotic perturbation and critical illness remains to be elucidated. We employed multi-omics factor analysis (MOFA) to systematically integrate the bacterial (16S rRNA), fungal (intergenic transcribed spacer 1 rRNA), and viral (virus discovery next generation sequencing) components of the intestinal microbiota of 33 critically ill patients with and without sepsis and 13 healthy volunteers. In addition, we quantified the absolute abundances of bacteria and fungi using 16S and 18S rRNA PCRs and characterized the short-chain fatty acids (SCFAs) butyrate, acetate, and propionate using nuclear magnetic resonance spectroscopy. We observe that a loss of the anaerobic intestinal environment is directly correlated with an overgrowth of aerobic pathobionts and their corresponding bacteriophages as well as an absolute enrichment of opportunistic yeasts capable of causing invasive disease. We also observed a strong depletion of SCFAs in both disease states, which was associated with an increased absolute abundance of fungi with respect to bacteria. Therefore, these findings illustrate the complexity of transkingdom changes following disruption of the intestinal bacterial microbiome. IMPORTANCE While numerous studies have characterized antibiotic-induced disruptions of the bacterial microbiome, few studies describe how these disruptions impact the composition of other kingdoms such as viruses, fungi, and protozoa. To address this knowledge gap, we employed MOFA to systematically integrate viral, fungal, and bacterial sequence data from critically ill patients (with and without sepsis) and healthy volunteers, both prior to and following exposure to broad-spectrum antibiotics. In doing so, we show that modulation of the bacterial component of the microbiome has implications extending beyond this kingdom alone, enabling the overgrowth of potentially invasive fungi and viruses. While numerous preclinical studies have described similar findings in vitro, we confirm these observations in humans using an integrative analytic approach. These findings underscore the potential value of multi-omics data integration tools in interrogating how different components of the microbiota contribute to disease states. In addition, our findings suggest that there is value in further studying potential adjunctive therapies using anaerobic bacteria or SCFAs to reduce fungal expansion after antibiotic exposure, which could ultimately lead to improved outcomes in the intensive care unit (ICU).Peer reviewe

    Epithelial argininosuccinate synthetase is dispensable for intestinal regeneration and tumorigenesis

    Get PDF
    The epithelial signaling pathways involved in damage and regeneration, and neoplastic transformation are known to be similar. We noted upregulation of argininosuccinate synthetase (ASS1) in hyperproliferative intestinal epithelium. Since ASS1 leads to de novo synthesis of arginine, an important amino acid for the growth of intestinal epithelial cells, its upregulation can contribute to epithelial proliferation necessary to be sustained during oncogenic transformation and regeneration. Here we investigated the function of ASS1 in the gut epithelium during tissue regeneration and tumorigenesis, using intestinal epithelial conditional Ass1 knockout mice and organoids, and tissue specimens from colorectal cancer patients. We demonstrate that ASS1 is strongly expressed in the regenerating and Apc-mutated intestinal epithelium. Furthermore, we observe an arrest in amino acid flux of the urea cycle, which leads to an accumulation of intracellular arginine. However, loss of epithelial Ass1 does not lead to a reduction in proliferation or increase in apoptosis in vivo, also in mice fed an arginine-free diet. Epithelial loss of Ass1 seems to be compensated by altered arginine metabolism in other cell types and the liver.Cellular mechanisms in basic and clinical gastroenterology and hepatolog

    Glutamine synthetase is essential in early mouse embryogenesis

    No full text
    Glutamine synthetase (GS) is expressed in a tissue-specific and developmentally controlled manner, and functions to remove ammonia or glutamate. Furthermore, it is the only enzyme that can synthesize glutamine de novo. Since congenital deficiency of GS has not been reported, we investigated its role in early development. Because GS is expressed in embryonic stem (ES) cells, we generated a null mutant by replacing one GS allele in-frame with a beta-galactosidase-neomycine fusion gene. GS(+/LacZ) mice have no phenotype, but GS(LacZ/LacZ) mice die at ED3.5, demonstrating GS is essential in early embryogenesis. Although cells from ED2.5 GS(LacZ/LacZ) embryos and GS(GFP/LacZ) ES cells survive in vitro in glutamine-containing medium, these GS-deficient cells show a reduced fitness in chimera analysis and fail to survive in tetraploid-complementation assays. The survival of heavily (>90%) chimeric mice up to at least ED16.5 indicates that GS deficiency does not entail cell-autonomous effects and that, after implantation, GS activity is not essential until at least the fetal period. We hypothesize that GS-deficient embryos die when they move from the uterine tube to the harsher uterine environment, where the embryo has to catabolize amino acids to generate energy and, hence, has to detoxify ammonia, which requires GS activity. Developmental Dynamics 236:1865-1875, 2007. (c) 2007 Wiley-Liss, Inc

    Upstream and intronic regulatory sequences interact in the activation of the glutamine synthetase promoter

    No full text
    Upstream and intronic regulatory sequences interact in the activation of the glutamine synthetase promoter. Garcia de Veas Lovillo RM, Ruijter JM, Labruyere WT, Hakvoort TB, Lamers WH. AMC Liver Center, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands. Glutamine synthetase (GS) is expressed at high levels in subsets of cells in some tissues and at low levels in all cells of other tissues, suggesting that the GS gene is surrounded by multiple regulatory elements. We searched for such elements in the 2.5-kb upstream region and in the 2.6-kb first intron of the GS gene, using FTO-2B hepatoma and C2/7 muscle cells as representatives of both cell types and transient transfection assays as our tools. In addition to the entire upstream region and entire intron, an upstream enhancer module at -2.5 kb, and 5', middle and 3' modules of the first intron were tested. The main effects of the respective modules and their combinatorial interactions were quantified using the analysis of variance (anova) technique. The upstream enhancer was strongly stimulatory, the middle intron module strongly inhibitory, and the 3'-intron module weakly stimulatory in both hepatoma and muscle cells. The 5'-intron module was strongly stimulatory in muscle cells only. The major new finding was that in both cell types, the upstream enhancer and 5'-intron module needed to be present simultaneously to fully realize their transactivational potencies. This interaction was responsible for a pronounced inhibitory effect of the 5'-intron module in the absence of the upstream enhancer in hepatoma cells, and for a strong synergistic effect of these two modules, when present simultaneously in muscle cells. The main difference between hepatoma and muscle cells therefore appeared to reside in tissue-specific differences in activity of the respective regulatory elements due to interactions rather than in the existence of tissue-specific regulatory element

    The 3'-UTR of the glutamine-synthetase gene interacts specifically with upstream regulatory elements, contains mRNA-instability elements and is involved in glutamine sensing

    No full text
    Glutamine synthetase (GS) is expressed at various levels in a wide range of tissues, suggesting that a complex network of modules regulates its expression. We explored the interactions between the upstream enhancer, regulatory regions in the first intron, and the 3'-untranslated region and immediate downstream genomic sequences of the GS gene (the GS "tail"), and compared the results with those obtained previously in conjunction with the bovine growth hormone (bGH) tail. The statistical analysis of these interactions revealed that the GS tail was required for full enhancer activity of the combination of the upstream enhancer and either the middle or the 3'-intron element. The GS tail also prevented a productive interaction between the upstream enhancer and the 5'-intron element, whereas the bGH tail did not, suggesting that the 5'-intron element is a regulatory element that needs to be silenced for full GS expression. Using the CMV promoter/enhancer and transfection experiments, we established that the 2.8 kb GS mRNA polyadenylation signal is approximately 10-fold more efficient than the 1.4 kb mRNA signal. Because the steady-state levels of both mRNAs are similar, the intervening conserved elements destabilize the long mRNA. Indeed, one but not all constructs containing these elements had a shorter half life in FTO-2B cells. A construct containing only 300 bases before and 100 bases after the 2.8 kb mRNA polyadenylation site sufficed for maximal expression. A stretch of 21 adenines inside this fragment conferred, in conjunction with the upstream enhancer and the 3'-part of the first intron, sensitivity of GS expression to ambient glutamin

    Foetal rise in hepatic enzymes follows decline in c-met and hepatocyte growth factor expression

    No full text
    BACKGROUND/AIMS: In the embryo, rapidly proliferating hepatocytes migrate from the liver primordium into the surrounding mesenchyme, whereas foetal hepatocytes are mitotically quiescent and accumulate hepatocyte-specific enzymes. We investigated the timing and topography of this behavioural switch. METHODS: The expression of the c-met receptor and its ligand, hepatocyte growth factor (HGF), was investigated in prenatal rat liver by in situ hybridization, immunohistochemistry and western-blot analysis. RESULTS: c-Met was expressed by hepatocytes and HGF by non-parenchymal liver cells. Their mRNA levels peaked during embryonic day (ED) 11-13. c-Met protein was weakly expressed in the entire liver during ED 11 and 12, but more abundantly at ED 13, when its expression withdrew to the hepatic periphery. Simultaneously, the periportal hepatocellular marker carbamoylphosphate synthetase began to accumulate in the centre of the liver. Although the definitive vascular architecture develops simultaneously, the downstream, pericentral hepatocytes began to express glutamine synthetase only 4 days later, suggesting a requirement for prior periportal hepatocyte maturation. Additionally, c-met protein appeared in the connective tissue surrounding the large veins. The c-met protein/mRNA ratio was substantially higher in non-epithelial cells (hepatic connective tissue, heart) than in endoderm-derived epithelia, including hepatocytes, indicating important post-transcriptional regulation. CONCLUSIONS: The decline in c-met expression reflects the end of the embryonic phase and heralds the onset of the fetal, maturational phase of liver developmen

    Gene expression patterns in melanocytic cells: candidate markers for early stage and malignant transformation

    No full text
    Gene expression patterns in melanocytic cells: candidate markers for early stage and malignant transformation. Meije CB, Hakvoort TB, Swart GW, Westerhof W, Lamers WH, Das PK. Department of Pathology, Academic Medical Center, University of Amsterdam, The Netherlands. Different stages of differentiation of human melanocytic cells, such as normal melanocytes, naevus and melanoma cells, reflect distinct gene expression patterns. A PCR-based subtractive hybridization and display method was applied to identify genes that are differentially expressed in melanocytic cells in relation to early stage and malignant transformation. This resulted in the identification of a number of candidate cDNAs differentially expressed among melanocytes, naevus cells, and (non)-metastatic melanoma cells. Out of this collection of cDNAs, 16 clones were screened that comprised 12 novel genes, one previously identified expressed sequence tag related to vesicular trafficking (Ras-related protein Rab5b). The other three were also known genes that were either related to cell motility (beta-tubulin), pre-mRNA splicing (small nuclear protein U1A), or of unknown function (the human TI227-H gene). The differential expression patterns of Rab5b and two novel gene fragments (pCMa1, pCMn2) were further assessed in melanocytic cells. pCMa1 was expressed more in metastatic melanoma than in primary melanoma cells. In contrast, pCMn2 was expressed in both non-metastatic and metastatic melanoma cells, but was not detectable in either normal melanocytes or naevus cells. The Ras-related protein Rab5b showed lower levels of expression in highly metastatic than in other melanoma cells. These three cDNAs may therefore be involved in the early stage and malignant transformation of melanocytes. Copyright 2001 John Wiley & Sons, Ltd
    corecore