16 research outputs found
Arrays of individually controlled ions suitable for two-dimensional quantum simulations
A precisely controlled quantum system may reveal a fundamental understanding of another, less accessible system of interest. A universal quantum computer is currently out of reach, but an analogue quantum simulator that makes relevant observables, interactions and states of a quantum model accessible could permit insight into complex dynamics. Several platforms have been suggested and proof-of-principle experiments have been conducted. Here, we operate two-dimensional arrays of three trapped ions in individually controlled harmonic wells forming equilateral triangles with side lengths 40 and 80 μm. In our approach, which is scalable to arbitrary two-dimensional lattices, we demonstrate individual control of the electronic and motional degrees of freedom, preparation of a fiducial initial state with ion motion close to the ground state, as well as a tuning of couplings between ions within experimental sequences. Our work paves the way towards a quantum simulator of two-dimensional systems designed at will
The New Politics of Global Tax Governance: Taking Stock a Decade After the Financial Crisis
The financial crisis of 2007–2009 is now broadly recognised as a once-in-a-generation inflection point in the history of global economic governance. It has also prompted a reconsideration of established paradigms in international political economy (IPE) scholarship. Developments in global tax governance open a window onto these ongoing changes, and in this essay we discuss four recent volumes on the topic drawn from IPE and beyond, arguing against an emphasis on institutional stability and analyses that consider taxation in isolation. In contrast, we identify unprecedented changes in tax cooperation that reflect a significant contemporary reconfiguration of the politics of global economic governance writ large. To develop these arguments, we discuss the links between global tax governance and four fundamental changes underway in IPE: the return of the state through more activist policies; the global power shift towards large emerging markets; the politics of austerity and populism; and the digitalisation of the economy
The HERMES Spectrometer
The HERMES experiment is collecting data on inclusive and semi-inclusive deep inelastic scattering of polarised positrons from polarised targets of Il, D, and He-3. These data give information on the spin structure of the nucleon. This paper describes the forward angle spectrometer built for this purpose. The spectrometer includes numerous tracking chambers (micro-strip gas chambers, drift and proportional chambers) in front of and behind a 1.3 T.m magnetic field, as well as an extensive set of detectors for particle identification (a lead-glass calorimeter, a pre-shower detector, a transition radiation detector, and a threshold Cherenkov detector). Two of the main features of the spectrometer are its good acceptance and identification of both positrons and hadrons, in particular pions. These characteristics, together with the purity of the targets, are allowing HERMES to make unique contributions to the understanding of how the spins of the quarks contribute to the spin of the nucleon. (C) 1998 Elsevier Science B.V. All rights reserved
Engineering of microfabricated ion traps and integration of advanced on-chip features
Atomic ions trapped in electromagnetic potentials have long been used for fundamental studies in quantum physics. Over the past two decades, trapped ions have been successfully used to implement technologies such as quantum computing, quantum simulation, atomic clocks, mass spectrometers and quantum sensors. Advanced fabrication techniques, taken from other established or emerging disciplines, are used to create new, reliable ion-trap devices aimed at large-scale integration and compatibility with commercial fabrication. This Technical Review covers the fundamentals of ion trapping before discussing the design of ion traps for the aforementioned applications. We overview the current microfabrication techniques and the various considerations behind the choice of materials and processes. Finally, we discuss current efforts to include advanced, on-chip features in next-generation ion traps