108 research outputs found

    PPQ-Trajectory : spatio-temporal quantization for querying in large trajectory repositories

    Get PDF
    We present PPQ-trajectory, a spatio-temporal quantization based solution for querying large dynamic trajectory data. PPQ-trajectory includes a partition-wise predictive quantizer (PPQ) that generates an error-bounded codebook with autocorrelation and spatial proximity-based partitions. The codebook is indexed to run approximate and exact spatio-temporal queries over compressed trajectories. PPQ-trajectory includes a coordinate quadtree coding for the codebook with support for exact queries. An incremental temporal partition-based index is utilised to avoid full reconstruction of trajectories during queries. An extensive set of experimental results for spatio-temporal queries on real trajectory datasets is presented. PPQ-trajectory shows significant improvements over the alternatives with respect to several performance measures, including the accuracy of results when the summary is used directly to provide approximate query results, the spatial deviation with which spatio-temporal path queries can be answered when the summary is used as an index, and the time taken to construct the summary. Superior results on the quality of the summary and the compression ratio are also demonstrated

    Scalable Graph Convolutional Network Training on Distributed-Memory Systems

    Full text link
    Graph Convolutional Networks (GCNs) are extensively utilized for deep learning on graphs. The large data sizes of graphs and their vertex features make scalable training algorithms and distributed memory systems necessary. Since the convolution operation on graphs induces irregular memory access patterns, designing a memory- and communication-efficient parallel algorithm for GCN training poses unique challenges. We propose a highly parallel training algorithm that scales to large processor counts. In our solution, the large adjacency and vertex-feature matrices are partitioned among processors. We exploit the vertex-partitioning of the graph to use non-blocking point-to-point communication operations between processors for better scalability. To further minimize the parallelization overheads, we introduce a sparse matrix partitioning scheme based on a hypergraph partitioning model for full-batch training. We also propose a novel stochastic hypergraph model to encode the expected communication volume in mini-batch training. We show the merits of the hypergraph model, previously unexplored for GCN training, over the standard graph partitioning model which does not accurately encode the communication costs. Experiments performed on real-world graph datasets demonstrate that the proposed algorithms achieve considerable speedups over alternative solutions. The optimizations achieved on communication costs become even more pronounced at high scalability with many processors. The performance benefits are preserved in deeper GCNs having more layers as well as on billion-scale graphs.Comment: To appear in PVLDB'2

    Cascade-aware partitioning of large graph databases

    Get PDF
    Graph partitioning is an essential task for scalable data management and analysis. The current partitioning methods utilize the structure of the graph, and the query log if available. Some queries performed on the database may trigger further operations. For example, the query workload of a social network application may contain re-sharing operations in the form of cascades. It is beneficial to include the potential cascades in the graph partitioning objectives. In this paper, we introduce the problem of cascade-aware graph partitioning that aims to minimize the overall cost of communication among parts/servers during cascade processes. We develop a randomized solution that estimates the underlying cascades, and use it as an input for partitioning of large-scale graphs. Experiments on 17 real social networks demonstrate the effectiveness of the proposed solution in terms of the partitioning objectives

    Variational recurrent sequence-to-sequence retrieval for stepwise illustration

    Get PDF
    We address and formalise the task of sequence-to-sequence (seq2seq) cross-modal retrieval. Given a sequence of text passages as query, the goal is to retrieve a sequence of images that best describes and aligns with the query. This new task extends the traditional cross-modal retrieval, where each image-text pair is treated independently ignoring broader context. We propose a novel variational recurrent seq2seq (VRSS) retrieval model for this seq2seq task. Unlike most cross-modal methods, we generate an image vector corresponding to the latent topic obtained from combining the text semantics and context. This synthetic image embedding point associated with every text embedding point can then be employed for either image generation or image retrieval as desired. We evaluate the model for the application of stepwise illustration of recipes, where a sequence of relevant images are retrieved to best match the steps described in the text. To this end, we build and release a new Stepwise Recipe dataset for research purposes, containing 10K recipes (sequences of image-text pairs) having a total of 67K image-text pairs. To our knowledge, it is the first publicly available dataset to offer rich semantic descriptions in a focused category such as food or recipes. Our model is shown to outperform several competitive and relevant baselines in the experiments. We also provide qualitative analysis of how semantically meaningful the results produced by our model are through human evaluation and comparison with relevant existing methods

    Characterizing the impact of geometric properties of word embeddings on task performance

    Get PDF
    Analysis of word embedding properties to inform their use in downstream NLP tasks has largely been studied by assessing nearest neighbors. However, geometric properties of the continuous feature space contribute directly to the use of embedding features in downstream models, and are largely unexplored. We consider four properties of word embedding geometry, namely: position relative to the origin, distribution of features in the vector space, global pairwise distances, and local pairwise distances. We define a sequence of transformations to generate new embeddings that expose subsets of these properties to downstream models and evaluate change in task performance to understand the contribution of each property to NLP models. We transform publicly available pretrained embeddings from three popular toolkits (word2vec, GloVe, and FastText) and evaluate on a variety of intrinsic tasks, which model linguistic information in the vector space, and extrinsic tasks, which use vectors as input to machine learning models. We find that intrinsic evaluations are highly sensitive to absolute position, while extrinsic tasks rely primarily on local similarity. Our findings suggest that future embedding models and post-processing techniques should focus primarily on similarity to nearby points in vector space.Comment: Appearing in the Third Workshop on Evaluating Vector Space Representations for NLP (RepEval 2019). 7 pages + reference

    D3P : Data-driven demand prediction for fast expanding electric vehicle sharing systems

    Get PDF
    The future of urban mobility is expected to be shared and electric. It is not only a more sustainable paradigm that can reduce emissions, but can also bring societal benefits by offering a more affordable on-demand mobility option to the general public. Many car sharing service providers as well as automobile manufacturers are entering the competition by expanding both their EV fleets and renting/returning station networks, aiming to seize a share of the market and to bring car sharing to the zero emissions level. During their fast expansion, one determinant for success is the ability of predicting the demand of stations as the entire system is growing continuously. There are several challenges in this demand prediction problem: First, unlike most of the existing work which predicts demand only for static systems or at few stages of expansion, in the real world we often need to predict the demand as or even before stations are being deployed or closed, to provide information and decision support. Second, for the new stations to be deployed, there is no historical data available to help the prediction of their demand. Finally, the impact of deploying/closing stations on the other stations in the system can be complex. To address these challenges, we formulate the demand prediction problem in the context of fast expanding electric vehicle sharing systems, and propose a data-driven demand prediction approach which aims to model the expansion dynamics directly from the data. We use a local temporal encoding process to handle the historical data for each existing station, and a dynamic spatial encoding process to take correlations between stations into account with Graph Convolutional Neural Networks (GCN). The encoded features are fed to a multi-scale predictor, which forecasts both the long-term expected demand of the stations and their instant demand in the near future. We evaluate the proposed approach with real-world data collected from a major EV sharing platform for one year. Experimental results demonstrate that our approach significantly outperforms the state of the art, showing up to three-fold performance gain in predicting demand for the expanding EV sharing systems

    Low-bit Quantization for Deep Graph Neural Networks with Smoothness-aware Message Propagation

    Get PDF
    Graph Neural Network (GNN) training and inference involve significant challenges of scalability with respect to both model sizes and number of layers, resulting in degradation of efficiency and accuracy for large and deep GNNs. We present an end-to-end solution that aims to address these challenges for efficient GNNs in resource constrained environments while avoiding the oversmoothing problem in deep GNNs. We introduce a quantization based approach for all stages of GNNs, from message passing in training to node classification, compressing the model and enabling efficient processing. The proposed GNN quantizer learns quantization ranges and reduces the model size with comparable accuracy even under low-bit quantization. To scale with the number of layers, we devise a message propagation mechanism in training that controls layer-wise changes of similarities between neighboring nodes. This objective is incorporated into a Lagrangian function with constraints and a differential multiplier method is utilized to iteratively find optimal embeddings. This mitigates oversmoothing and suppresses the quantization error to a bound. Significant improvements are demonstrated over state-of-the-art quantization methods and deep GNN approaches in both full-precision and quantized models. The proposed quantizer demonstrates superior performance in INT2 configurations across all stages of GNN, achieving a notable level of accuracy. In contrast, existing quantization approaches fail to generate satisfactory accuracy levels. Finally, the inference with INT2 and INT4 representations exhibits a speedup of 5.11 ×\times and 4.70 ×\times compared to full precision counterparts, respectively.Comment: To appear in CIKM202

    LFM-Pro: a tool for detecting significant local structural sites in proteins

    Get PDF
    Motivation: The rapidly growing protein structure repositories have opened up new opportunities for discovery and analysis of functional and evolutionary relationships among proteins. Detecting conserved structural sites that are unique to a protein family is of great value in identification of functionally important atoms and residues. Currently available methods are computationally expensive and fail to detect biologically significant local features
    corecore