12 research outputs found

    A Microfluidic Co-Flow Route for Human Serum Albumin-Drug-Nanoparticle Assembly.

    Get PDF
    Nanoparticles are widely studied as carrier vehicles in biological systems because their size readily allows access through cellular membranes. Moreover, they have the potential to carry cargo molecules and as such, these factors make them especially attractive for intravenous drug delivery purposes. Interest in protein-based nanoparticles has recently gained attraction due to particle biocompatibility and lack of toxicity. However, the production of homogeneous protein nanoparticles with high encapsulation efficiencies, without the need for additional cross-linking or further engineering of the molecule, remains challenging. Herein, we present a microfluidic 3D co-flow device to generate human serum albumin/celastrol nanoparticles by co-flowing an aqueous protein solution with celastrol in ethanol. This microscale co-flow method resulted in the formation of nanoparticles with a homogeneous size distribution and an average size, which could be tuned from ≈100 nm to 1 Όm by modulating the flow rates used. We show that the high stability of the particles stems from the covalent cross-linking of the naturally present cysteine residues within the particles formed during the assembly step. By choosing optimal flow rates during synthesis an encapsulation efficiency of 75±24 % was achieved. Finally, we show that this approach achieves significantly enhanced solubility of celastrol in the aqueous phase and, crucially, reduced cellular toxicity

    Label-Free Protein Analysis Using Liquid Chromatography with Gravimetric Detection.

    Get PDF
    The detection and analysis of proteins in a label-free manner under native solution conditions is an increasingly important objective in analytical bioscience platform development. Common approaches to detect native proteins in solution often require specific labels to enhance sensitivity. Dry mass sensing approaches, by contrast, using mechanical resonators, can operate in a label-free manner and offer attractive sensitivity. However, such approaches typically suffer from a lack of analyte selectivity as the interface between standard protein separation techniques and micro-resonator platforms is often constrained by qualitative mechanical sensor performance in the liquid phase. Here, we describe a strategy that overcomes this limitation by coupling liquid chromatography with a quartz crystal microbalance (QCM) platform by using a microfluidic spray dryer. We explore a strategy which allows first to separate a protein mixture in a physiological buffer solution using size exclusion chromatography, permitting specific protein fractions to be selected, desalted, and subsequently spray-dried onto the QCM for absolute mass analysis. By establishing a continuous flow interface between the chromatography column and the spray device via a flow splitter, simultaneous protein mass detection and sample fractionation is achieved, with sensitivity down to a 100 ÎŒg/mL limit of detection. This approach for quantitative label-free protein mixture analysis offers the potential for detection of protein species under physiological conditions.ERC EPSRC Frances and Augustus Newman Foundation Oppenheimer Early Career Fellowship Nanotechnologies Doctoral Training Centre Fluidic Analytics Lt

    Influence of enzyme immobilization and skin-sensor interface on non-invasive glucose determination from interstitial fluid obtained by magnetohydrodynamic extraction

    Get PDF
    We integrated a magnetohydrodynamic fluid extractor with an amperometric glucose biosensor to develop a wearable device for non-invasive glucose monitoring. Reproducible fluid extraction through the skin and efficient transport of the extracted fluid to the biosensor surface are prerequisites for non-invasive glucose monitoring. We optimized the enzyme immobilization and the interface layer between the sensing device and the skin. The monitoring device was evaluated by extracting fluid through porcine skin followed by glucose detection at the biosensor. The biosensor featured a screen-printed layer of Prussian Blue that was coated with a layer containing glucose oxidase. Both physical entrapment of glucose oxidase in chitosan and tethering of glucose oxidase to electrospun nanofibers were evaluated. Binding of glucose oxidase to nanofibers under mild conditions provided a stable biosensor with analytical performance suitable for accurate detection of micromolar concentrations of glucose. Hydrogels of varying thickness (95-2000 mu m) as well as a thin (30 mu m) nanofibrous polycaprolactone mat were studied as an interface layer between the biosensor and the skin. The effect of mass transfer phenomena at the biosensor-skin interface on the analytical performance of the biosensor was evaluated. The sensing device detected glucose extracted through porcine skin with an apparent (overall) sensitivity of-0.8 mA/(M.cm(2)), compared to a sensitivity of-17 mA/(M.cm(2)) for measurement in solution. The amperometric response of the biosensor correlated with the glucose concentration in the fluid that had been extracted through porcine skin with the magnetohydrodynamic technique.Peer reviewe

    Sampling of fluid through skin with magnetohydrodynamics for noninvasive glucose monitoring

    Get PDF
    Out of 463 million people currently with diabetes, 232 million remain undiagnosed. Diabetes is a threat to human health, which could be mitigated via continuous self-monitoring of glucose. In addition to blood, interstitial fluid is considered to be a representative sample for glucose monitoring, which makes it highly attractive for wearable on-body sensing. However, new technologies are needed for efficient and noninvasive sampling of interstitial fluid through the skin. In this report, we introduce the use of Lorentz force and magnetohydrodynamics to noninvasively extract dermal interstitial fluid. Using porcine skin as an ex-vivo model, we demonstrate that the extraction rate of magnetohydrodynamics is superior to that of reverse iontophoresis. This work seeks to provide a safe, effective, and noninvasive sampling method to unlock the potential of wearable sensors in needle-free continuous glucose monitoring devices that can benefit people living with diabetes.Peer reviewe

    Pilot study in human healthy volunteers on the use of magnetohydrodynamics in needle-free continuous glucose monitoring

    Get PDF
    The benefits of continuous glucose monitoring (CGM) in diabetes management are extensively documented. Yet, the broader adoption of CGM systems is limited by their cost and invasiveness. Current CGM devices, requiring implantation or the use of hypodermic needles, fail to offer a convenient solution. We have demonstrated that magnetohydrodynamics (MHD) is effective at extracting dermal interstitial fluid (ISF) containing glucose, without the use of needles. Here we present the first study of ISF sampling with MHD for glucose monitoring in humans. We conducted 10 glucose tolerance tests on 5 healthy volunteers and obtained a significant correlation between the concentration of glucose in ISF samples extracted with MHD and capillary blood glucose samples. Upon calibration and time lag removal, the data indicate a Mean Absolute Relative Difference (MARD) of 12.9% and Precision Absolute Relative Difference of 13.1%. In view of these results, we discuss the potential value and limitations of MHD in needle-free glucose monitoring.Peer reviewe

    Electrolyte‐gated organic field‐effect transistors with high operational stability and lifetime in practical electrolytes

    Get PDF
    A key component of organic bioelectronics is electrolyte‐gated organic field‐effect transistors (EG‐OFETs), which have recently been used as sensors to demonstrate label‐free, single‐molecule detection. However, these devices exhibit limited stability when operated in direct contact with aqueous electrolytes. Ultrahigh stability is demonstrated to be achievable through the utilization of a systematic multifactorial approach in this study. EG‐OFETs with operational stability and lifetime several orders of magnitude higher than the state of the art have been fabricated by carefully controlling a set of intricate stability‐limiting factors, including contamination and corrosion. The indacenodithiophene‐co‐benzothiadiazole (IDTBT) EG‐OFETs exhibit operational stability that exceeds 900 min in a variety of widely used electrolytes, with an overall lifetime exceeding 2 months in ultrapure water and 1 month in various electrolytes. The devices were not affected by electrical stress‐induced trap states and can remain stable even in voltage ranges where electrochemical doping occurs. To validate the applicability of our stabilized device for biosensing applications, the reliable detection of the protein lysozyme in ultrapure water and in a physiological sodium phosphate buffer solution for 1500 min was demonstrated. The results show that polymer‐based EG‐OFETs are a viable architecture not only for short‐term but also for long‐term biosensing applications

    Direct field evidence of autocatalytic iodine release from atmospheric aerosol

    Get PDF
    Reactive iodine plays a key role in determining the oxidation capacity, or cleansing capacity, of the atmosphere in addition to being implicated in the formation of new particles in the marine boundary layer. The postulation that heterogeneous cycling of reactive iodine on aerosols may significantly influence the lifetime of ozone in the troposphere not only remains poorly understood but also heretofore has never been observed or quantified in the field. Here, we report direct ambient observations of hypoiodous acid (HOI) and heterogeneous recycling of interhalogen product species (i.e., iodine monochloride [ICI] and iodine monobromide [IBr]) in a midlatitude coastal environment. Significant levels of ICI and IBr with mean daily maxima of 4.3 and 3.0 parts per trillion by volume (1-min average), respectively, have been observed throughout the campaign. We show that the heterogeneous reaction of HOI on marine aerosol and subsequent production of iodine interhalogens are much faster than previously thought. These results indicate that the fast formation of iodine interhalogens, together with their rapid photolysis, results in more efficient recycling of atomic iodine than currently considered in models. Photolysis of the observed ICI and IBr leads to a 32% increase in the daytime average of atomic iodine production rate, thereby enhancing the average daytime iodine-catalyzed ozone loss rate by 10 to 20%. Our findings provide direct field evidence that the autocatalytic mechanism of iodine release from marine aerosol is important in the atmosphere and can have significant impacts on atmospheric oxidation capacity.Peer reviewe
    corecore