163 research outputs found

    Structure-based virtual screening and molecular dynamics studies to explore potential natural inhibitors against 3C protease of foot-and-mouth disease virus

    Get PDF
    Foot-and-mouth disease (FMD) is a highly infectious animal disease caused by foot-and-mouth disease virus (FMDV) and primarily infects cloven-hoofed animals such as cattle, sheep, goats, and pigs. It has become a significant health concern in global livestock industries because of diverse serotypes, high mutation rates, and contagious nature. There is no specific antiviral treatment available for FMD. Hence, based on the importance of 3C protease in FMDV viral replication and pathogenesis, we have employed a structure-based virtual screening method by targeting 3C protease with a natural compounds dataset (n = 69,040) from the InterBioScreen database. Virtual screening results identified five potential compounds, STOCK1N-62634, STOCK1N-96109, STOCK1N-94672, STOCK1N-89819, and STOCK1N-80570, with a binding affinity of −9.576 kcal/mol, −8.1 kcal/mol, −7.744 kcal/mol, −7.647 kcal/mol, and − 7.778 kcal/mol, respectively. The compounds were further validated through physiochemical properties and density functional theory (DFT). Subsequently, the comparative 300-ns MD simulation of all five complexes exhibited overall structural stability from various MD analyses such as root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA), H-bonds, principal component analysis (PCA), and free energy landscape (FEL). Furthermore, MM-PBSA calculation suggests that all five compounds, particularly STOCK1N-62634, STOCK1N-96109, and STOCK1N-94672, can be considered as potential inhibitors because of their strong binding affinity toward 3C protease. Thus, we hope that these identified compounds can be studied extensively to develop natural therapeutics for the better management of FMD

    Genome-wide association studies on collagen contents trait for meat quality in Hanwoo

    Get PDF
    Beef consumers valued meat quality traits such as texture, tenderness, juiciness, flavor, and meat color that determining consumers’ purchasing decision. Most research on meat quality has focused on marbling, a key characteristic related to meat eating quality. However, other important traits such as meat texture, tenderness, and color have not much studied in cattle. Among these traits, meat tenderness and texture of cattle are among the most important factors affecting quality evaluation of consumers. Collagen is the main component of connective tissues.It greatly affects meat tenderness. The objective of this study was to determine significant variants and candidate genes associated with collagen contents trait (total collagen) through genome-wide association studies (GWAS). Phenotypic and genomic data from 135 Hanwoo were used. The BLUPF90 family program and GRAMMAR method for GWAS were applied in this study. A total of 73 potential single nucleotide polymorphisms (SNPs) showed significant associations with collagen content. They were located in or near 108 candidate genes. TMEM135 and ME3 genes were identified to have the most significant SNPs associated with collagen contents trait. Data indicated that these genes were related to collagen. Biological processes and pathways for the prediction of biological functions of candidate genes were confirmed. We found that candidate genes were involved in positive regulation of CREB transcription factor activity and actin cytoskeleton related to tenderness and texture of beef. Three genes (CRTC3, MYO1C and MYLK4) belonging to these biological functions were related to tenderness. These results provide a basis for improving genomic characteristics of Hanwoo for the production of tender beef. Furthermore, they could be used they could be used as an index to select desired traits for consumers

    Identification of Molecular Signatures from Different Vaccine Adjuvants in Chicken by Integrative Analysis of Microarray Data

    Get PDF
    The present study compared the differential functions of two groups of adjuvants, Montanide incomplete Seppic adjuvant (ISA) series and Quil A, cholesterol, dimethyl dioctadecyl ammonium bromide, and Carbopol (QCDC) formulations, in chicken by analyzing published microarray data associated with each type of vaccine adjuvants. In the biological function analysis for differentially expressed genes altered by two different adjuvant groups, ISA series and QCDC formulations showed differential effects when chickens were immunized with a recombinant immunogenic protein of Eimeria. Among the biological functions, six categories were modified in both adjuvant types. However, with respect to “Response to stimulus”, no biological process was modified by the two adjuvant groups at the same time. The QCDC adjuvants showed effects on the biological processes (BPs) including the innate immune response and the immune response to the external stimulus such as toxin and bacterium, while the ISA adjuvants modified the BPs to regulate cell movement and the response to stress. In pathway analysis, ISA adjuvants altered the genes involved in the functions related with cell junctions and the elimination of exogenous and endogenous macromolecules. The analysis in the present study could contribute to the development of precise adjuvants based on molecular signatures related with their immunological functions

    Molecular characterization and expression of a disintegrin and metalloproteinase with thrombospondin motifs 8 in chicken

    Get PDF
    Objective A disintegrin and metallopeptidase with thrombospondin motifs type 8 (ADAMTS8) is crucial for diverse physiological processes, such as inflammation, tissue morphogenesis, and tumorigenesis. The chicken ADAMTS8 (chADAMTS8) gene was differentially expressed in the kidney following exposure to different calcium concentrations, suggesting a pathological role of this protein in metabolic diseases. We aimed to examine the molecular characteristics of chADAMTS8 and analyze the gene-expression differences in response to toll-like receptor 3 (TLR3) stimulation. Methods The ADAMTS8 mRNA and amino acid sequences of various species (chicken, duck, cow, mouse, rat, human, chimpanzee, pig, and horse) were retrieved from the Ensembl database and subjected to bioinformatics analyses. Reverse-transcription polymerase chain reaction (RT-PCR) and quantitative PCR (qPCR) experiments were performed with various chicken tissues and the chicken fibroblast DF-1 cell line, which was stimulated with polyinosinic-polycytidylic acid (poly[I:C]; a TLR3 ligand). Results The chADAMTS8 gene was predicted to contain three thrombospondin type 1 (TSP1) domains, whose amino acid sequences shared homology among the different species, whereas sequences outside the TSP1 domains (especially the amino-terminal region) were very different. Phylogenetic analysis revealed that chADAMTS8 is evolutionarily clustered in the same clade with that of the duck. chADAMTS8 mRNA was broadly expressed in chicken tissues, and the expression was significantly up-regulated in the DF-1 cells in response to poly(I:C) stimulation (p<0.05). These results showed that chADAMTS8 may be a target gene for TLR3 signaling. Conclusion In this report, the genetic information of chADAMTS8 gene, its expression in chicken tissues, and chicken DF-1 cells under the stimulation of TLR3 were shown. The result suggests that chADAMTS8 expression may be induced by viral infection and correlated with TLR3-mediated signaling pathway. Further study of the function of chADAMTS8 during TLR3-dependent inflammation (which represents RNA viral infection) is needed and it will also be important to examine the molecular mechanisms during different regulation, depending on innate immune receptor activation

    A C1069G SNP of the MC4R gene and its association with economic traits in Korean native cattle (brown, brindle, and black)

    Get PDF
    Background: The melanocortin-4 receptor gene (MC4R) plays an important role in regulating food intake and body weight in mammals. In the present study, we identified the MC4R gene in native Korean brown, brindle, and black cattle by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP), and investigated its association with economic traits. A total of 413 cattle from the three breeds were tested for backfat thickness, carcass weight, longissimus muscle area, and marbling score, and statistical data were analyzed using the SAS program. Results: The C allele had the highest frequency in brown and brindle cattle, and the G allele frequency was highest in black cattle. The C1069G SNP was significantly (p &lt; 0.05) associated with only marbling scores in brown and brindle cattle but no significant association was detected between the marbling scores and polymorphism in black cattle. Conclusions: These results suggest that a C1069G SNP of the MC4R gene may be useful as a genetic marker for marbling scores in Korean brown and brindle cattle

    Genetic Parameters of Reproductive and Meat Quality Traits in Korean Berkshire Pigs

    Get PDF
    Genetic parameters of Berkshire pigs for reproduction, carcass and meat quality traits were estimated using the records from a breeding farm in Korea. For reproduction traits, 2,457 records of the total number of piglets born (TNB) and the number of piglets born alive (NBA) from 781 sows and 53 sires were used. For two carcass traits which are carcass weight (CW) and backfat thickness (BF) and for 10 meat quality traits which are pH value after 45 minutes (pH45m), pH value after 24 hours (pH24h), lightness in meat color (LMC), redness in meat color (RMC), yellowness in meat color (YMC), moisture holding capacity (MHC), drip loss (DL), cooking loss (CL), fat content (FC), and shear force value (SH), 1,942 pig records were used to estimate genetic parameters. The genetic parameters for each trait were estimated using VCE program with animal model. Heritability estimates for reproduction traits TNB and NBA were 0.07 and 0.06, respectively, for carcass traits CW and BF were 0.37 and 0.57, respectively and for meat traits pH45m, pH24h, LMC, RMC, YMC, MHC, DL, CL, FC, and SH were 0.48, 0.15, 0.19, 0.36, 0.28, 0.21, 0.33, 0.45, 0.43, and 0.39, respectively. The estimate for genetic correlation coefficient between CW and BF was 0.27. The Genetic correlation between pH24h and meat color traits were in the range of −0.51 to −0.33 and between pH24h and DL and SH were −0.41 and −0.32, respectively. The estimates for genetic correlation coefficients between reproductive and meat quality traits were very low or zero. However, the estimates for genetic correlation coefficients between reproductive traits and drip and cooking loss were in the range of 0.12 to 0.17 and −0.14 to −0.12, respectively. As the estimated heritability of meat quality traits showed medium to high heritability, these traits may be applicable for the genetic improvement by continuous measurement. However, since some of the meat quality traits showed negative genetic correlations with carcass traits, an appropriate breeding scheme is required that carefully considers the complexity of genetic parameters and applicability of data

    Genome-wide Association Study of Integrated Meat Quality-related Traits of the Duroc Pig Breed

    Get PDF
    The increasing importance of meat quality has implications for animal breeding programs. Research has revealed much about the genetic background of pigs, and many studies have revealed the importance of various genetic factors. Since meat quality is a complex trait which is affected by many factors, consideration of the overall phenotype is very useful to study meat quality. For integrating the phenotypes, we used principle component analysis (PCA). The significant SNPs refer to results of the GRAMMAR method against PC1, PC2 and PC3 of 14 meat quality traits of 181 Duroc pigs. The Genome-wide association study (GWAS) found 26 potential SNPs affecting various meat quality traits. The loci identified are located in or near 23 genes. The SNPs associated with meat quality are in or near five genes (ANK1, BMP6, SHH, PIP4K2A, and FOXN2) and have been reported previously. Twenty-five of the significant SNPs also located in meat quality-related QTL regions, these result supported the QTL effect indirectly. Each single gene typically affects multiple traits. Therefore, it is a useful approach to use integrated traits for the various traits at the same time. This innovative approach using integrated traits could be applied on other GWAS of complex-traits including meat-quality, and the results will contribute to improving meat-quality of pork

    Barrier protection via Toll-like receptor 2 signaling in porcine intestinal epithelial cells damaged by deoxynivalnol

    Get PDF
    Additional file 2. IPEC-J2 cells pretreated with TLR2 ligand maintained the expression of MCP-1, GM-CSF and TLR2 against DON exposure. IPEC-J2 cells pretreated with or without TLR2 ligand for 24 h were exposed to DON. (A) The bar graph showed the mRNA levels of porcine mcp-1, gm-csf measured using real time-PCR at 1 and 6 h after DON exposure (n = 3). (B) The mRNA levels of porcine tlr2 were measured using real-time quantitative PCR analysis at 6 h. NT represents no treatment. Expression of each mRNA was presented relative to the expression of housekeeping gene, gapdh (n = 3). *P < 0.05; **P < 0.01; ***P < 0.001, determined by one-way ANOVA with Tukey’s posttest
    corecore