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Abstract 

Intestinal barrier is the first line of defense inside the body and comprises intercellular tight junction (TJ) proteins that 
regulate paracellular permeability. Deoxynivalenol (DON), a fungal metabolite often found in the contaminated food 
of domestic animals, is known to impair intestinal barrier function and may be involved in intestinal inflammation. 
Unlike in humans and mice, the importance of Toll-like receptor (TLR) 2 expressed in porcine intestinal epithelial cells 
is largely unclear. Therefore, the aim of the present study was to investigate whether TLR2 stimulation enhances intes‑
tinal barrier function and protects against DON exposure. We found that the cells treated with TLR2 ligands decreased 
the epithelial barrier permeability and enhanced TJ protein expression in intestinal porcine epithelial cells (IPEC-J2). 
In addition, pretreatment with TLR2 ligand, including Pam3CSK4 (PCSK) and lipoteichoic acid from Bacillus subtilis, 
prevented DON-induced barrier dysfunction by increasing the expression of TJ proteins via the PI3K-Akt-dependent 
pathway. It is likely that the DON-disrupted intestinal barrier caused biological changes of immune cells in the lamina 
propria. Thus, we conducted co-culture of differentiated IPEC-J2 cells in the upper well together with peripheral blood 
mononuclear cells in the bottom well and found that apical TLR2 stimulation of IPEC-J2 cells could alleviate the reduc‑
tion in cell survival and proliferation of immune cells. Conclusively, TLR2 signaling on intestinal epithelial cells may 
enhance intestinal barrier function and prevent DON-induced barrier dysfunction of epithelial cells.

© 2016 Gu et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate 
if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/
zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
The gastrointestinal tract is chronically exposed to a huge 
burden of foreign antigens including microorganisms and 
toxic molecules. Intestinal epithelial cells (IECs) provide 
the initial line of mucosal host defense in the intestine. 
Their ability to act as a physical barrier against antigens, 
to allow selective absorption of nutrients, and to defend 
against harmful molecules is crucial for maintaining gut 
immune homeostasis [1]. Paracellular and intercellular 
transit of molecules in the intestine is modulated by a 
complex network of tight junction (TJ) and gap junction 
linking IECs [2]. For instance, the increased epithelial 

permeability of TJ may initiate and maintain persistent 
inflammation in intestinal inflammatory diseases.

Toll-like receptor (TLR) 2, a member of the TLR fam-
ily that is constitutively expressed in IECs, recognizes 
conserved microbe-associated molecular patterns of 
both gram-negative and gram-positive bacteria, such 
as lipoteichoic acid (LTA), lipoarabinomannan, lipo-
proteins and peptidoglycan (PGN). TLR2 is known to 
enhance transepithelial resistance of the IEC barrier 
through apical redistribution of ZO-1 via protein kinase 
Cα/δ [3]. Moreover, its stimulation efficiently preserves 
ZO-1-associated barrier integrity of IECs against stress-
induced damage, which is critically controlled by the 
PI3K/Akt-pathway via MyD88 [4]. However, the precise 
role of TLR2 in intestinal barrier function in pig remains 
unclear.

Deoxynivalenol (DON) is a mycotoxin produced by 
Fusarium spp., which is prevalent in animal feed [5]. 
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Ingestion of feed contaminated with DON is toxic 
to many animal species, and pigs are the most sensi-
tive species [6, 7]. It has been suggested that DON 
targets dividing cells such as IECs and immune cells 
[8]. DON alters the expression of transcription fac-
tors by readily binding to the ribosomes and rapidly 
activating mitogen-activated protein kinases, and thus 
appears to affect the expression of a number of mol-
ecules, including membrane receptors and cytokines 
[9]. This mycotoxin is known to modify the production 
of nitric oxide (NO) or mucin produced by intestinal 
epithelium [10, 11], and to increase the susceptibility 
of animals to intestinal infection [12]. Especially, DON 
suppresses the expression of TJ proteins and, thus, the 
barrier function of the intestinal epithelium in pigs and 
humans [13, 14].

The IEC barrier maintains a well-organized structure 
and communication between IECs and immune cells in 
the lamina propria [1]. The formation and distribution of 
TJ significantly enhances IEC barrier function, thus con-
tributing to the protection of the underlying lamina pro-
pria from stress, including invasion by harmful antigens. 
However, the damage caused by exposure to DON may 
disrupt this interaction, disturbing the intestinal immune 
system.

Previously, we found that Bacillus subtilis and its LTA 
could protect IPEC-J2 from DON-induced damage [15]. 
Based on this, we hypothesized that treatment of TLR2 
ligands, such as B. subtilis-derived LTA, PGN, and syn-
thetic agonist Pam3CSK4, influences the barrier func-
tion of IPEC-J2 cells, which may confer a protective effect 
against DON-induced damage. The objective of the pre-
sent study was to investigate the mechanism of TLR2-
mediated barrier regulation in IPEC-J2 cells.

Materials and methods
Cell culture
Non-transformed porcine jejunum epithelial cell line 
(IPEC-J2; DSMZ) was cultured in the Dulbecco’s modi-
fied Eagle medium (DMEM) and Ham’s F-12 medium 
mixture at one to one (Gibco Life Technologies, Grand 
Island, USA) supplemented with 5% heat-inactivated fetal 
bovine serum (FBS), 1% insulin-transferrin-selenium-
X (ITS-X) and antibiotics (all from Invitrogen, Grand 
Island, USA) in an incubator with atmosphere of 5% CO2 
at 39  °C. During growth and differentiation of the cells, 
the medium was replaced every 3 days.

Treatment
IPEC-J2 cell monolayer was treated with 2 μg/mL of DON 
(Sigma, Missouri, USA) for 24, 48 or 72 h. To evaluate the 
effect of TLR2 agonists on the barrier function, IPEC-
J2 cells were pretreated with 10  μg/mL of LTA from B. 

subtilis (LTA-BS; Invivogen, San Diego, USA), PGN from 
B. subtilis (PGN-BS; Invivogen), Pam3CSK4 (Pam3Cys-
SKKKK; Invivogen) or complete medium as a control for 
24 h before DON treatment. In some experiments, 10 μg/
mL of the PI3K inhibitor LY294002 (Cell signaling, Mas-
sachusetts, USA) or 20 μg/mL of anti-TLR2 neutralizing 
antibody (eBioscience, San Diego, USA) was treated prior 
to the treatment with TLR2 ligands.

Measurement of transepithelial electrical resistance
IPEC-J2 cells were grown in 0.3  cm2 polyethylene tere-
phthalate membrane insert with 0.4-mm pore (Corn-
ing, New York, USA). The cells were differentiated in the 
insert until reaching >1000 Ω of transepithelial electrical 
resistance (TEER) and treated with TLR2 ligands and/or 
DON. TEER was measured every 24 h with epithelial vol-
tohm meter (EVOM2; World Precision Instruments, Sar-
asota, USA), and the values were expressed as kΩ × cm2.

Porcine peripheral blood cell isolation
Porcine blood samples were obtained from 2 to 6 months 
old pigs (Landrace–Yorkshire–Duroc) supplied by Ani-
mal Farm, Seoul National University (Suwon, Korea). The 
use of blood was approved by the Institutional Animal 
Care and Use Committee of Seoul National University 
(IACUC No., SNU-131126-3). Whole blood was diluted 
with PBS at a ratio of 1:1, and porcine peripheral blood 
mononuclear cells (PBMCs) were isolated by density gra-
dient centrifugation (400 × g for 25 min without brake) 
using Ficoll-paque Plus (Amersham Bioscience, Bucking-
hamshire, UK). PBMCs were suspended in RPMI 1640 
medium supplemented with 10% FBS and 1% antibiotics 
(Invitrogen).

Transwell co‑culture system
IPEC-J2 cells were grown and differentiated in culture 
media in 0.3  cm2 polyethylene terephthalate membrane 
inserts with 0.4-mm pore (Corning). PBMCs were added 
basolaterally and 2  μg/mL of DON was treated apically 
in 100 μL of culture medium. The co-culture system was 
incubated for 48  h with or without pretreatment with 
TLR2 ligands at insert.

MTT [3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium 
bromide] assay
IPEC-J2 cells, seeded in cultured media in a 96-well cul-
ture plate, were treated with DON for 24 and 48 h in the 
absence or presence of pretreatment with TLR2 ligands. 
The cells were cultured with medium alone as control. 
At the end of incubation, 10  μL of MTT (Sigma) solu-
tion (5 mg/mL in PBS) was added to each well for 2 h and 
the media was discarded. Then, 100  μL of DMSO was 
added to each well and shaken for 5 min to solubilize the 
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formazan formed in the viable cells [16]. Absorbance was 
measured at 595 nm using a microplate reader, VersaMax 
(Molecular devices, Sunnyvale, USA). The cell viability 
(%) was calculated as the percent ratio of absorbance of 
the samples against the non-treated control medium.

Western blot analysis
IPEC-J2 cells were treated with DON in the absence or 
presence of pretreatment with TLR2 ligands, washed 
with PBS and lysed in a lysis buffer (20  mM Tris–HCl, 
150  mM NaCl, 1  mM EDTA, 1% Triton X-100), fol-
lowed by a quantitation of protein using Micro BCA kit 
(Thermo, Rockford, USA). For isolation of cytosolic and 
membrane parts from IPEC-J2 cells, membrane protein 
extraction kit (Thermo) was used by its instruction. As 
previously described [17], the same amount of protein 
extracts was loaded in 10% Tris–glycine polyacrylamide 
gels and electrophoresed. Then, the proteins were trans-
ferred onto a polyvinylidene difluoride (PVDF) micropo-
rous membrane for 2 h at 4 °C and blocked with 5% skim 
milk in TBS-T (20  mM Tris HCl, 100  mM NaCl, 0.05% 
Tween 20) for 90 min. The blot was incubated with rab-
bit anti-claudin-3, -occludin or -zonula occludens (ZO)-1 
antibodies (Invitrogen), anti-p-AKT, -p-P70S6K, -Akt, 
-FAK, and -Bcl-2 antibodies (Cell signaling), or mouse 
anti-β-actin monoclonal IgG1 antibody (Santa Cruz Bio-
technology, Grand Island, USA) overnight. Subsequently, 
the membrane was washed and incubated with goat 
anti-rabbit or anti-mouse IgG-HRP (Santa Cruz Biotech-
nology) for 1  h. The target protein was visualized with 
enhanced chemiluminescence (ECL) system (GE Health-
care, Waukesha, USA), followed by analysis using Chemi-
Doc XRS (Bio-rad, Hercules, USA).

Confocal immunofluorescence microscopy
IPEC-J2 cells, treated with or without DON in the 
absence or presence of pretreatment with TLR2 ligands, 
were washed, fixed with PBS containing 4% formalde-
hyde (30  min, room temperature), permeabilized with 
0.5% Triton-X-100 in PBS for 3  min, and blocked with 
10% FBS (30  min, room temperature). Samples were 
incubated with rabbit anti-claudin-3, -occludin and 
-ZO-1 antibodies (Invitrogen), followed by staining with 
goat anti-rabbit IgG conjugated with Alexa fluor 488 (BD 
Biosciences, San Jose, USA), and 4′,6-diamidino-2-phe-
nylinodele for nuclei (Immunobioscience, Raleigh, USA). 
Images were captured using a laser scanning confocal 
microscope, LSM700 (Carl Zeiss, Jena, Germany).

Flow cytometry analysis
Porcine PBMCs were harvested, washed with PBS con-
taining 1% FBS and stained with the following mAb 
at pre-determined optimal concentrations; mouse 

anti-porcine CD3e (clone PPT3; Southern Biotech, Bir-
mingham, USA), CD4 FITC (clone 74-12-4; BD Bio-
sciences), CD8a PE (clone 76-2-11; BD Biosciences), 
CD172a (clone 74-22-15; BD Biosciences) and CD163 PE 
(clone 2A10/11; AbD Serotec, Langford, UK) antibodies. 
The cells were incubated for 20 min at 4  °C in the dark. 
To evaluate proliferation, the cells were labeled with 
1  μM of CFSE for 15  min at 37  °C, washed twice with 
plain medium and cultured with IPEC-J2 cells on the 
transwell plate. After staining, the cells were washed and 
the expression of surface markers was measured using a 
flow cytometry (FACSCantoII, BD Biosciences). All the 
flow cytometric data were analyzed using FlowJo soft-
ware (Tree Star, California, USA).

Annexin V/PI analysis
As previously described [18], floating cells were collected 
and, then, attached cells were washed with PBS and 
trypsinized for 5 min. Finally, trypsinized cells and float-
ing cells were added together and stained with Annexin 
V-APC and propidium iodide (PI). The intensity of the 
markers was examined by flow cytometry (FACSCantoII, 
BD Biosciences). All flow cytometic data were analyzed 
by using FlowJo software (Tree Star).

Real‑time PCR
Total RNA was isolated using TRIzol reagent (Invitrogen) 
according to the manufacturer’s instructions and reverse-
transcribed to generate complementary DNA (cDNA) 
using oligo-dT primers (Bioneer, Daejeon, Korea). The 
real-time quantitative PCR was carried out using a Ste-
pOne Plus real-time PCR system (Applied Biosystems, 
Foster City, USA). SYBR® Green PCR Master Mix was 
used according to manufacturer’s specification (Applied 
Biosystems). The PCR reaction was carried out in 96-well 
reaction plate with 10 μL SYBR® green PCR master mix, 
0.5 μL primers, 1 μL cDNA template and 8 μL nuclease-
free H2O. The 40 thermal cycles of 2 min at 50 °C, 10 min 
at 95  °C, 15  s at 95  °C, 30  s at 60  °C, and 30  s at 72  °C 
were utilized according to the manufacturer’s recommen-
dation. Relative quantification of target genes was calcu-
lated using the 2−ΔΔCt method. Target gene expression 
was normalized to GAPDH mRNA level. The nucleotide 
sequences of porcine specific primers for TLR2, mono-
cyte chemoattractant protein-1 (MCP-1), granulocyte–
macrophage colony stimulating factor (GM-CSF) and 
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 
are shown in Additional file 1.

Statistical analysis
Statistical analysis (one-way ANOVA with Tukey post-
test or two-way ANOVA with Bonferroni posttest) was 
performed using the GraphPad Prism (version 5.01, 
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GraphPad Software, San Diego, USA). Differences were 
considered significant if p < 0.05.

Results
DON disrupted intestinal barrier function in IPEC‑J2 cells
It has been suggested that DON causes an increase in 
the permeability of porcine intestinal epithelial cells 
via mitogen-activated protein kinase signaling [13] by 
reducing the expression of TJ proteins [19]. In the pre-
sent study, IPEC-J2 cells treated with DON (0, 2, and 
5 μg/mL) for 0, 24, 48, or 72 h showed a time- and dose-
dependent reduction in TEER (Figure  1A). We further 
investigated cell viability after treatment with DON using 
the MTT assay. The result showed that DON at 2 or 5 μg/
mL decreased the viability of IPEC-J2 cells after 48 h and 
72 h in a dose-dependent manner (Figure 1B).

The intestinal barrier is interconnected by TJ formed 
by multi-protein complexes that link adjacent epithelial 
cells near their apical borders [20]. To investigate the 

effect of DON on epithelial cells, we examined changes 
in the expression of TJ proteins (claudin-3 and ZO-1) 
in IPEC-J2 cells treated with DON. The results showed 
that 2  μg/mL of DON decreased both claudin-3 and 
ZO-1 (Figure 1C), as evidenced by the loss of the outer-
line of ZO-1 expression on DON-treated IPEC-J2 cells 
(Figure  1D). Therefore, treatment of DON at 2  μg/mL 
induced a breakdown of epithelial integrity and reduced 
the expression of TJ proteins, coincident with lower via-
bility of IPEC-J2 cells.

TLR2 ligands increased TJ barrier function 
and up‑regulated the expression of TJ proteins on IPEC‑J2 
cells
TLR2, expressed on epithelial cells [21], is known to 
enhance intestinal barrier function [22]. In our previ-
ous study, we demonstrated that B. subtilis-derived LTA 
(LTA-BS)and B. subtilis increased barrier function in 
IPEC-J2 cells [15]. To investigate the TLR2-mediated 

Figure 1  DON caused intestinal barrier disruption and reduction of IPEC-J2 cell viability. IPEC-J2 cells were treated with DON (0, 2, or 
5 μg/mL) for 0, 24, 48 or 72 h. A TEER values were measured using epithelial voltohm meter at indicated time points. Data represent mean ± SD of 
TEER (n = 4). B Viability of the cells was examined by MTT assay at 48 and 72 h after DON treatment (n = 3). *P < 0.05, **P < 0.01, and ***P < 0.001 
001, determined by (A) two-way ANOVA with Bonferroni’s posttest, or (B) one-way ANOVA with Tukey’s posttest. To examine the expression of tight 
junction proteins, IPEC-J2 cells were treated with DON (0, 0.2 and 2 μg/mL) for 24, 48, or 72 h. Whole-cell lysates were analyzed for the expression of 
(C) Claudin-3, ZO-1 and β-actin by using Western blot assay. The representative figure from three similar results is shown. D ZO-1 expression in IPEC-
J2 was visualized using confocal microscopy after staining with anti-ZO-1 antibody conjugated with Alexa fluor 488-FITC (green) and nuclei (DAPI; 
blue) (n = 3). Scale bar = 50 μm.
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effect on barrier function of porcine epithelial cells, 
IPEC-J2 cells were stimulated with LTA-BS, PGN-BS, 
S. aureus-derived LTA (LTA-SA), and synthetic TLR2 
ligand Pam3CSK4 (PCSK) and Escherichia coli-derived 
lipopolysaccharide (LPS) as a TLR4 ligand [23]. All 
TLR2 ligands used in the present study significantly 
increased the TEER of IPEC-J2 monolayers in a dose- 
and time-dependent manner after 24 and 72 h treatment 
(Figure 2A). In contrast, LPS had minimal or no effect on 
barrier integrity in the current study (data not shown).

To further investigate whether the barrier-enhancing 
effect of TLR2 ligands is associated with TJ proteins, 

we examined the expression of key TJ proteins in the 
IPEC-J2 cells. We found that the expression of clau-
din-3, occludin, and ZO-1 was increased especially after 
LTA-BS treatment (Figure 2B). TJ proteins can be clas-
sified into membrane and cytosolic components [24]. 
Barrier integrity is determined by forming complex at 
the transmembrane regions as well as total TJ proteins 
[25, 26]. To validate the localization of TJ proteins, the 
cells were divided into cytosolic (hydrophilic region) and 
membrane (hydrophobic region) fractions. The results 
showed that the expression of TJ proteins was increased 
in the membrane fraction, indicating that these proteins 

Figure 2  TLR2 ligands enhanced barrier function in IPEC-J2 cells. IPEC-J2 cells were treated with synthetic TLR2 ligands, Pam3CSK4 (PCSK), B. 
subtilis-derived PGN (PGN-BS) or B. subtilis-derived LTA (LTA-BS) at 0, 0.1, 1, or 10 μg/mL. A TEER was examined at 24 h using epithelial voltohm meter. 
Data are presented as mean ± SD (n = 4). *P < 0.05; **P < 0.01, determined by one-way ANOVA with Tukey’s posttest. B The monolayer of IPEC-J2 
cells was lysed and protein extracts were analyzed for claudin-3, occludin, and ZO-1 by using Western blot assay. C Lysates were produced from 
membrane and cytosolic portion of the cells and the expression of claudin-3 and occludin at 24 h was examined by Western blot assay. β-actin was 
used as an internal control (n = 3). The representative figure from three similar results is shown. Cyt; cytosol, Mem; membrane.
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were localized mostly in the membrane after treatment 
with the TLR2 ligand (Figure  2C). Collectively, these 
results demonstrate that epithelial cells treated with 
TLR2 ligand may enhance intestinal barrier function and 
its integrity.

Pretreatment with TLR2 ligands led to barrier protection 
against DON exposure in IPEC‑J2 cells
To investigate the prophylactic effect of TLR2 ligands 
against DON-induced barrier disruption, two types of 
TLR2 ligands (10 μg/mL of PCSK and LTA-BS) were pre-
treated in IPEC-J2 cells for 24 h, followed by DON treat-
ment (2 μg/mL) for 48 h. Interestingly, the integrity of the 
barrier treated with TLR2 ligand was preserved, showing 
nearly normal values, which were similar to the TEER of 
the control (Figure 3A). Additionally, when the cells were 
treated with LTA-BS prior to DON treatment, cell viabil-
ity was significantly higher than that observed with DON 

treatment alone (Figure  3B). Additionally, expression of 
GM-CSF, which is required for the survival and prolifera-
tion of epithelial cells [27], was not decreased in IPEC-J2 
cells pretreated with TLR2 ligand (Additional file 2A). TJ 
protein expression was also higher than that observed 
with DON treatment (Figure 3C). Confocal microscopic 
analysis further revealed that TLR2 ligands induced the 
barrier formation of IPEC-J2 cells and protected them 
from DON-mediated damage (Figure 3D). MCP-1 is one 
of the key chemokines that regulate migration and infil-
tration of monocytes/macrophages [28], and contributes 
to increased endothelial permeability by regulating the 
redistribution of TJ proteins [29]. We found that DON-
induced upregulation of MCP-1 expression in epithelial 
cells was decreased following pretreatment with TLR2 
ligand (Additional file 2A). Thus, TLR2 treatment showed 
a barrier-protective effect by preventing DON-induced 
damage and sustaining TJ formation.

Figure 3  IPEC-J2 cells treated with TLR2 ligand showed a protective effect against DON-induced damage. IPEC-J2 cells were stimulated 
with 10 μg/mL of synthetic TLR2 ligand, PCSK or LTA-BS and then treated with or without DON (2 μg/mL) for 24 or 48 h. A TEER values were exam‑
ined using epithelial voltohm meter. Data represent mean ± SD of TEER (n = 3). *P < 0.05; **P < 0.01, determined by one-way ANOVA with Tukey’s 
posttest at each time point. NT denotes no treatment. B Viability of the cells was examined by MTT assay at 48 h after DON treatment (n = 4). 
*P < 0.05, determined by two-way ANOVA with Bonferroni’s post. C Protein levels of claudin-3 and ZO-1 at 48 h after DON exposure were examined 
from whole-cell lysates by Western blot assay. β-actin was used as an internal control. D ZO-1 expression was visualized using confocal microscopy 
after staining with anti-ZO-1 antibody conjugated with Alexa fluor 488-FITC (green) and nuclei (DAPI; blue). The representative figure from four 
similar results is shown. Scale bar = 50 μm.



Page 7 of 11Gu et al. Vet Res  (2016) 47:25 

Association of PI3K‑Akt signaling with barrier regulation 
was increased by TLR2 treatment in IPEC‑J2 cells
It has been demonstrated that TLR2 enhances ZO-
1-associated intestinal epithelial barrier integrity via the 
PI3K/Akt pathway [4]. To examine the involvement of 
PI3K signaling in the regulation of TJ protein-associated 
barrier function, we blocked the PI3K signal, and changes 
in PI3K-related molecules and barrier integrity were 
evaluated 24  h after TLR2 ligand treatment. Notably, 
the results showed that IPEC-J2 cells treated with TLR2 
ligands, either synthetic PCSK or LTA-BS, increased the 
phosphorylation of Akt and p70S6K. However, phos-
phorylation was decreased in the presence of the PI3K 
inhibitor (Figure 4A), indicating that TLR2 stimulation is 
associated with PI3K signaling.

B cell lymphoma 2 (Bcl-2), an anti-apoptotic protein, 
and focal adhesion kinase (FAK), a non-receptor tyros-
ine kinase, play important roles in cell adhesion, prolif-
eration, survival, and barrier function [21, 30]. We found 
that activation of these molecules was largely inhibited 
by the PI3K inhibitor (Figure 4A), suggesting that TLR2-
ligand treatment could down-regulate cell death via a 
PI3K-associated mechanism.

Next, to investigate whether the protective effect of 
TLR2 ligands on barrier function against DON is asso-
ciated with PI3K signaling, we blocked this signal and 
examined TJ protein expression in IPEC-J2 cells pre-
treated with TLR2 ligand and then exposed to DON. 
The results showed that TLR2 ligand (both PCSK and 
LTA-BS)-mediated expression of claudin-3 and ZO-1 
was resistant to DON exposure, which was significantly 
suppressed by PI3K inhibition (Figures 4B and C). Thus, 
TLR2 signaling induced a protective function of the bar-
rier that was related to downstream PI3K-Akt signaling.

In addition, because PCSK and LTA-BS are sensed by 
TLR2, we investigated whether TJ formation was also 
enhanced by PCSK and LTA-BS against DON in the 
absence of TLR2 signaling. The result showed that pretreat-
ment with TLR2 neutralization antibody completely inhib-
ited the PCSK- and LTA-BS-mediated barrier protective 
effect (Figure  4D). Furthermore, pretreatment with TLR2 
ligand enhanced TLR2 expression of the epithelial cells that 
caused resistance against DON-induced damage (Additional 
file  2B), indicating that TLR2 stimulation plays an impor-
tant role in TLR2-mediated barrier regulation. These results 
indicate that TLR2-mediated barrier function influences the 
expression of intestinal TJ proteins and has a critical role in 
the protection against DON-induced barrier damage.

TLR2 stimulation led to cell survival and proliferation 
of monocytes and lymphocytes
IEC maintains close communication with immune cells 
in the lamina propria [20]. First, we set the co-culture 

system by incubating IPEC-J2 cells together with PBMCs 
using a trans-well plate to mimic the intestinal environ-
ment. We found that co-culture of PBMCs with IPEC-
J2 cells reduced apoptosis, as shown by low Annexin V 
expression in PBMCs compared to that in PBMCs with-
out co-culture (Additional file 3A), suggesting that IPEC-
J2 cells had a positive impact on immune cell survival. 
Coincidently, co-cultured CD3+ lymphocytes retained 
better CD4 and CD8 expression, and CD172a+ mono-
cytes showed increased CD163 expression at 72  h after 
co-culture compared to cells that were not co-cultured 
(Additional file 3B).

We further hypothesized that damage to intestinal epi-
thelial cells treated with DON affected the immune cells. 
Therefore, we investigated the survival of PBMCs co-
cultured with IPEC-J2 cells damaged by DON treatment. 
The results showed that CD163 expression of CD172a+ 
monocytes was diminished by DON treatment coinci-
dent with elevated tumor necrosis factor-α production 
(Additional file  4). Thus, DON treatment on the api-
cal side may be involved in the inflammatory response. 
We also found that DON treatment also led to signifi-
cantly higher expression of Annexin V (apoptotic cells) 
and PI (necrotic cells) of PBMCs on the basolateral side 
when compared to that in the control (apoptotic cells, 
4.74% versus 2.12%, and necrotic cells, 36.9 versus 23.1%, 
respectively), coincident with the proportional decrease 
in live cells (46.7 vs. 64.9%) (Figure 5A). Notably, LTA-BS 
treatment of epithelial cells showed a reduction in apop-
totic and necrotic cells in PBMCs that were co-cultured. 
Furthermore, TLR2 ligand pre-treatment resulted in 
decreased apoptosis of PBMCs against DON exposure, 
coincident with increased live cells compared to that in 
non-treated cells (apoptotic cells, 4.74 vs. 0.88%). In addi-
tion, proliferation of myeloid cells (CD172a+) appeared to 
be suppressed by DON under the same condition, while 
proliferation was increased after pretreatment with TLR2 
ligand (Figure 5B). Thus, TLR2 treatment had a positive 
effect on the survival and proliferation of immune cells.

Discussion
In the present study, we examined the mechanism by 
which TLR2 signaling regulates the barrier function of 
porcine intestinal epithelial cells exposed to DON. In 
IEC, TJs are multiple protein complexes that link the api-
cal side of the epithelium, playing an important role in 
barrier integrity [31]. TLR2 stimulation has previously 
been shown to preserve TJ-associated barrier function, 
which is controlled by the PI3K/Akt pathway and PKC 
signaling [22, 32]. However, the regulation of TJs by TLR2 
in pigs is not well characterized. It has been reported that 
TLR2 is expressed on IECs [33] and in the gut tissues [21] 
of pigs. Interestingly, in the present study, we found that 
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porcine IEC showed enhanced expression of TJ proteins 
through PI3K/Akt signaling by TLR2 ligands, includ-
ing LTA-BS, PGN-BS, and PCSK, while this was not 
observed with LPS, a representative TLR4 ligand.

DON is known to interfere with the expression of TJ 
proteins on porcine intestinal cells and binds to ribo-
somes to inhibit translation [34]; however, there is cur-
rently no clear strategy for protecting the porcine 

Figure 4  TLR2 ligands induced PI3K-Akt-dependent regulation of intestinal barrier function in IPEC-J2 cells. IPEC-J2 cells were stimu‑
lated with PI3K inhibitor, LY294002 (10 μg/mL) for 1 h prior to the treatment with PCSK and LTA-BS for 24 h. A Total Akt (serine 473), p-Akt, p70S6K, 
Bcl-2, FAK, and β-actin were examined using Western blot assay. B TJ proteins, claudin-3 and ZO-1 compared to β-actin control were examined 
for their expression from whole-cell lysates by Western blot assay. The representative figure from four similar results is shown. C The expression of 
claudin-3 and ZO-1 in the cells was visualized using confocal microscopy after staining with anti-claudin-3 or -ZO-1 antibody conjugated with Alexa 
fluor 488-FITC (green) and nuclei (DAPI; blue). The representative figure from four similar results is shown. D The cells were pre-treated with TLR2 
neutralizing antibody (20 μg/mL) for 1 h before TLR2 stimulation in order to neutralize TLR2. DON (2 μg/mL) was treated for 48 h, and the expres‑
sion of claudin-3, occludin, and ZO-1 was visualized using confocal microscopy. The representative figure from four similar results is shown. Scale 
bar = 50 μm.
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intestine from the toxin. Previous findings showed 
that B. subtilis can prevent IPEC-J2 cells from DON-
induced barrier dysfunction [15], which led us to 
investigate whether prior TLR2 activation had barrier-
protective properties against DON exposure. Interest-
ingly, our results suggest that TLR2 signaling may be an 
effective prophylactic strategy for ameliorating damage 
to epithelial cells by DON in pigs. DON treatment sup-
pressed cell viability and GM-CSF expression in IPEC-
J2 cells was alleviated by (pre)exposure of TLR2 ligands 
demonstrated that TLR2 signaling is involved in promot-
ing epithelial cell survival against DON. This was further 
supported by the observation that FAK and Bcl-2 were 
enhanced via the PI3K pathway. GM-CSF in the gut epi-
thelial cell plays an important role in cell survival [27]. 
Moreover, FAK has been shown to regulate epithelial cell 
survival and proliferation during mucosal injury [30], as 
well as barrier function through the redistribution of TJ 
proteins [21]. Thus, our results suggest that the ability of 
IPEC-J2 cells treated with TLR2 ligands to preserve the 
barrier function is associated not only with modulation 
of the TJ assembly via the PI3K/Akt pathway, but also 
with promotion of epithelial cell survival via FAK and 
Bcl-2.

TLR2 signaling influences phynotype and/or func-
tion of immune cells directly, as demonstrated in previ-
ous studies [35, 36], as well as indirectly through IECs, 
as shown in the present study. Since IEC is in close con-
tact with lamina propria cells in the intestinal tract, we 
hypothesized that altered barrier function, induced by 
apical administration of toxin, influenced immune cells 
on the basolateral side. Thus, we used a transwell co-
culture system by incubating IPEC-J2 cells in the insert 
(upper part) and PBMCs in the bottom; these cells made 
no direct contact. We found that the presence of IPEC-J2 
cells inhibited immune cell apoptosis, which was main-
tained better than with PBMCs alone. IECs act as mod-
ulators of the mucosal immune response by recruiting 
immune cells via chemokines and the induction of reg-
ulatory immune cells via various cytokines and growth 
factors, including interleukin-10 and transforming 
growth factor-β [37]. However, these factors from IPEC-
J2 cells are not well defined. Using this co-culture system, 
we found that apical TLR2 activation alleviated apoptosis 
and decreased the proliferation of immune cells affected 
by the DON-damaged barrier. Apical TLR activation has 
been studied in human IECs and can drive the regulatory 
or inflammatory effector function of immune cells [38]. 

Figure 5  TLR2 ligands affected the fate of innate immune cells in IPEC-J2/PBMC co-culture system. IPEC-J2 cells and porcine PBMCs were 
co-cultured using trans-well plate. The cells were treated with B. subtilis-derived LTA (LTA-BS, 10 μg/mL) for 24 h, followed by DON treatment (2 μg/
mL) for 48 h. A Attached cells in the bottom well were trypsinized and combined with the rest of the cells. Then, the cells were stained with anti-
Annexin V and PI, and analyzed for the cell death using flow cytometry. The data represent means of the percentage of cells out of total cells ± SD 
(n = 4). B To investigate proliferation, porcine PBMCs were stained with CFDA-SE before co-culture. Then, the cells were treated with DON for 48 h 
with or without pretreatment with LTA-BS, and the cell proliferation was measured by flow cytometry. The degree of proliferation was shown as 
percentage (mean ± SD) of CFSE on CD172a+ monocytes. The representative result from four similar results is shown.
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However, further studies are needed to define the effect 
of TLR2 ligation on mucosal effector immune responses 
by porcine IECs. Nonetheless, the present study suggests 
the utilization of a useful in vitro model for investigating 
the interplay between pig mucosal immune system and 
IECs.

This is the first study to describe the mechanism 
of TLR2 signaling on porcine intestinal barrier func-
tion in relation to immune regulation. We showed 
that (1) TLR2 activation upregulated the expression 
of TJ proteins on porcine epithelial cells and there-
fore increased barrier integrity; (2) Pretreatment with 
TLR2 ligands induced resistance to IPEC-J2 cells dam-
aged by DON treatment and improved the viability of 
intestinal epithelial cells when cultured alone or in 
co-culture with immune cells; and (3) TLR2-mediated 
barrier function of IPEC-J2 cells was controlled via 
PI3K/Akt signaling. Thus, our results provide insight 
into TLR2 signaling in porcine epithelial cells as a 
potential prophylactic target for modulating gastro-
intestinal inflammation by promoting TJ-associated 
intestinal barrier function.
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