14 research outputs found

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Exergetic life cycle assessment of hydrogen production systems

    No full text
    Considéré comme vecteur énergétique du futur, l'hydrogène semble être la solution miracle pour sortir de la crise énergétique et environnementale actuelle. Ceci peut être vrai à condition de résoudre tous les problèmes inhérents à son cycle de vie (production, distribution, stockage et utilisation). Face aux nombreux impacts environnementaux générés au cours de la production d’hydrogène, la complexité de leur évaluation et les éventuelles interactions entre eux, le recours à des méthodes d’évaluation environnementale semble nécessaire. Ainsi, l’Analyse de Cycle de Vie Exergétique (ACVE) a été choisie comme l’outil le plus intéressant pour l’étude des scénarios de production d’hydrogène. Elle va, d’une part, comparer des systèmes de production d’hydrogène dans le but de déterminer lequel est le plus éco-efficace et, d’autre part, localiser leurs possibilités d’amélioration environnementale. Huit scénarios de production d’hydrogène ont été étudiés par cette approche ACVE. Ces scénarios se basent essentiellement sur des techniques de reformage du méthane fossile, du biométhane et du bioéthanol. Les résultats obtenus montrent que les scénarios de production d’hydrogène à partir du méthane fossile, technique mûre et largement utilisée, sont les plus gros consommateurs de ressources abiotiques et les plus émetteurs de gaz à effet de serre (GES). Par contre, le recours au biométhane comme source d’hydrogène peut présenter, dans certaines configurations, une bonne solution. Le profil environnemental d’une filière hydrogène ex-biométhane peut encore être rendu plus attrayant par amélioration du système de digestion anaérobie avec un système de reformage sur site. Le recours au bioéthanol produit à partir du blé comme source d’hydrogène présente des effets néfastes sur l’environnement. En effet, ces procédés sont caractérisés par de grands pouvoirs d’eutrophisation et d’acidification en plus de leurs émissions importantes des gaz effet de serre (GES). Toutefois, le bioéthanol peut constituer une source durable et renouvelable pour la production d’hydrogène si sa production ne nuit pas à l’environnementConsidered as the future energy carrier, hydrogen appears to be the miracle solution to overcome the current energy crisis and environmental problems. This can be possible only by solving all the problems associated with its life cycle (production, distribution, storage and final use).Due to the large number of environmental impacts generated during hydrogen production, the complexity of their evaluation and the possible interactions among them the use of environmental assessment methods is necessary. The Exergetic Life Cycle Assessment (ELCA) approach was chosen as the most useful tool for hydrogen production scenarios investigation. It compares hydrogen production systems in order to identify which one is more eco-efficient and recognizes their opportunities for environmental improvement. Eight scenarios for hydrogen production were studied by the ELCA approach. These scenarios are essentially based on reforming techniques of fossil methane, biomethane and bioethanol. The results show that the hydrogen produced by fossil methane scenarios, a mature and widely used technique, are the largest consumers of abiotic resources and emitters of greenhouse gases (GHG). The use of biomethane as hydrogen source presents an interesting solution. The environmental profile of a hydrogen ex-bio-methane can be made even more attractive solution by improving anaerobic digestion system with on-site reforming process. The use of bio-ethanol produced from wheat as a hydrogen source has large environmental impacts. In fact, these processes are characterized by large eutrophication and acidification potentials in addition to their emissions of large amount of greenhouse gases (GHG). However, bio-ethanol can be a sustainable and renewable source for hydrogen production on condition that it is produced by environmentally friendly manner

    Analyse de cycle de vie exergétique de systèmes de production d'hydrogène

    No full text
    Considered as the future energy carrier, hydrogen appears to be the miracle solution to overcome the current energy crisis and environmental problems. This can be possible only by solving all the problems associated with its life cycle (production, distribution, storage and final use).Due to the large number of environmental impacts generated during hydrogen production, the complexity of their evaluation and the possible interactions among them the use of environmental assessment methods is necessary. The Exergetic Life Cycle Assessment (ELCA) approach was chosen as the most useful tool for hydrogen production scenarios investigation. It compares hydrogen production systems in order to identify which one is more eco-efficient and recognizes their opportunities for environmental improvement. Eight scenarios for hydrogen production were studied by the ELCA approach. These scenarios are essentially based on reforming techniques of fossil methane, biomethane and bioethanol. The results show that the hydrogen produced by fossil methane scenarios, a mature and widely used technique, are the largest consumers of abiotic resources and emitters of greenhouse gases (GHG). The use of biomethane as hydrogen source presents an interesting solution. The environmental profile of a hydrogen ex-bio-methane can be made even more attractive solution by improving anaerobic digestion system with on-site reforming process. The use of bio-ethanol produced from wheat as a hydrogen source has large environmental impacts. In fact, these processes are characterized by large eutrophication and acidification potentials in addition to their emissions of large amount of greenhouse gases (GHG). However, bio-ethanol can be a sustainable and renewable source for hydrogen production on condition that it is produced by environmentally friendly mannersConsidéré comme vecteur énergétique du futur, l'hydrogène semble être la solution miracle pour sortir de la crise énergétique et environnementale actuelle. Ceci peut être vrai à condition de résoudre tous les problèmes inhérents à son cycle de vie (production, distribution, stockage et utilisation). Face aux nombreux impacts environnementaux générés au cours de la production d'hydrogène, la complexité de leur évaluation et les éventuelles interactions entre eux, le recours à des méthodes d'évaluation environnementale semble nécessaire. Ainsi, l'Analyse de Cycle de Vie Exergétique (ACVE) a été choisie comme l'outil le plus intéressant pour l'étude des scénarios de production d'hydrogène. Elle va, d'une part, comparer des systèmes de production d'hydrogène dans le but de déterminer lequel est le plus éco-efficace et, d'autre part, localiser leurs possibilités d'amélioration environnementale. Huit scénarios de production d'hydrogène ont été étudiés par cette approche ACVE. Ces scénarios se basent essentiellement sur des techniques de reformage du méthane fossile, du biométhane et du bioéthanol. Les résultats obtenus montrent que les scénarios de production d'hydrogène à partir du méthane fossile, technique mûre et largement utilisée, sont les plus gros consommateurs de ressources abiotiques et les plus émetteurs de gaz à effet de serre (GES). Par contre, le recours au biométhane comme source d'hydrogène peut présenter, dans certaines configurations, une bonne solution. Le profil environnemental d'une filière hydrogène ex-biométhane peut encore être rendu plus attrayant par amélioration du système de digestion anaérobie avec un système de reformage sur site. Le recours au bioéthanol produit à partir du blé comme source d'hydrogène présente des effets néfastes sur l'environnement. En effet, ces procédés sont caractérisés par de grands pouvoirs d'eutrophisation et d'acidification en plus de leurs émissions importantes des gaz effet de serre (GES). Toutefois, le bioéthanol peut constituer une source durable et renouvelable pour la production d'hydrogène si sa production ne nuit pas à l'environnemen

    A New Rheological Model for Phosphate Slurry Flows

    No full text
    In this paper, a new rheological model for the flow of phosphate-water suspensions is proposed. The model’s ability to replicate the rheological characteristics of phosphate-water suspensions under different shear rate conditions is evaluated using rheometric tests, and it is found to be in good agreement with experimental data. A comprehensive methodology for obtaining the model parameters is presented. The proposed model is then incorporated into the OpenFoam numerical code. The results demonstrate that the model is capable of reproducing the rheological behavior of phosphate suspensions at both low and high concentrations by comparing it with suitable models for modeling the rheological behavior of phosphate suspensions. The proposed model can be applied to simulate and monitor phosphate slurry flows in industrial applications

    Comparative life cycle assessment of eight alternatives for hydrogen production from renewable and fossil feedstock

    No full text
    International audienceThe objective of this study is to conduct a comparative life cycle assessment of eight hydrogen production scenarios. The analysis enables a comparison of the sustainability performance of H-2 production alternatives, as well as the identification of the key elements of each option. The scenarios investigated are based on (1) fossil CH4 reforming processes, namely steam reforming, partial oxidation and auto-thermal reforming; (2) biological CH4 reforming, i.e., steam CH4 reforming, partial oxidation and auto-thermal reforming; and (3) bioethanol-to-hydrogen systems, namely steam reforming and auto-thermal reforming. The assessment is carried out with the SimaPro 7.1 program. Both CML baseline 2000 and Eco-indicator 99 are used as life cycle impact assessment methods. The results indicate that the biomethane reforming systems have the lowest impact of all of the systems. The fossil CH4 reforming scenarios produce the highest emissions of global warming gas and have the greatest contribution to the abiotic depletion potential impact. Although wheat-derived bioethanol is considered to be a biofuel, bioethanol-to-hydrogen production systems have a higher impact than fossil CH4 on acidification, eutrophication, ozone layer depletion and toxicological impacts. This research provides regulators and policy makers with a basis upon which to guide further research and development in the H-2 sector

    Analyse de cycle de vie exergétique de systèmes de production d'hydrogène

    No full text
    Considéré comme vecteur énergétique du futur, l'hydrogène semble être la solution miracle pour sortir de la crise énergétique et environnementale actuelle. Ceci peut être vrai à condition de résoudre tous les problèmes inhérents à son cycle de vie (production, distribution, stockage et utilisation). Face aux nombreux impacts environnementaux générés au cours de la production d hydrogène, la complexité de leur évaluation et les éventuelles interactions entre eux, le recours à des méthodes d évaluation environnementale semble nécessaire. Ainsi, l Analyse de Cycle de Vie Exergétique (ACVE) a été choisie comme l outil le plus intéressant pour l étude des scénarios de production d hydrogène. Elle va, d une part, comparer des systèmes de production d hydrogène dans le but de déterminer lequel est le plus éco-efficace et, d autre part, localiser leurs possibilités d amélioration environnementale. Huit scénarios de production d hydrogène ont été étudiés par cette approche ACVE. Ces scénarios se basent essentiellement sur des techniques de reformage du méthane fossile, du biométhane et du bioéthanol. Les résultats obtenus montrent que les scénarios de production d hydrogène à partir du méthane fossile, technique mûre et largement utilisée, sont les plus gros consommateurs de ressources abiotiques et les plus émetteurs de gaz à effet de serre (GES). Par contre, le recours au biométhane comme source d hydrogène peut présenter, dans certaines configurations, une bonne solution. Le profil environnemental d une filière hydrogène ex-biométhane peut encore être rendu plus attrayant par amélioration du système de digestion anaérobie avec un système de reformage sur site. Le recours au bioéthanol produit à partir du blé comme source d hydrogène présente des effets néfastes sur l environnement. En effet, ces procédés sont caractérisés par de grands pouvoirs d eutrophisation et d acidification en plus de leurs émissions importantes des gaz effet de serre (GES). Toutefois, le bioéthanol peut constituer une source durable et renouvelable pour la production d hydrogène si sa production ne nuit pas à l environnementConsidered as the future energy carrier, hydrogen appears to be the miracle solution to overcome the current energy crisis and environmental problems. This can be possible only by solving all the problems associated with its life cycle (production, distribution, storage and final use).Due to the large number of environmental impacts generated during hydrogen production, the complexity of their evaluation and the possible interactions among them the use of environmental assessment methods is necessary. The Exergetic Life Cycle Assessment (ELCA) approach was chosen as the most useful tool for hydrogen production scenarios investigation. It compares hydrogen production systems in order to identify which one is more eco-efficient and recognizes their opportunities for environmental improvement. Eight scenarios for hydrogen production were studied by the ELCA approach. These scenarios are essentially based on reforming techniques of fossil methane, biomethane and bioethanol. The results show that the hydrogen produced by fossil methane scenarios, a mature and widely used technique, are the largest consumers of abiotic resources and emitters of greenhouse gases (GHG). The use of biomethane as hydrogen source presents an interesting solution. The environmental profile of a hydrogen ex-bio-methane can be made even more attractive solution by improving anaerobic digestion system with on-site reforming process. The use of bio-ethanol produced from wheat as a hydrogen source has large environmental impacts. In fact, these processes are characterized by large eutrophication and acidification potentials in addition to their emissions of large amount of greenhouse gases (GHG). However, bio-ethanol can be a sustainable and renewable source for hydrogen production on condition that it is produced by environmentally friendly mannersNANCY-INPL-Bib. électronique (545479901) / SudocSudocFranceF

    Thermodynamic analysis of hydrogen production by steam and autothermal reforming of soybean waste frying oil

    No full text
    International audienceHydrogen production via steam and autothermal reforming of soybean waste frying oils (WFOs) is thermodynamically investigated via the Gibbs free energy minimization method. The thermodynamic optimum conditions are determined to maximize hydrogen production while minimizing the methane and carbon monoxide contents and coke formation. Equilibrium calculations are performed at atmospheric pressure over a wide range of temperatures (400-1200 degrees C), steam-to-WFO ratios (S/C: 1-15) and oxygen-to-WFO ratios (O/C: 0.0-2.0). The baseline case used for the study considers soybean WFO after 8 h of use (WFO8). The influence of frying time on the performance of reforming reactors is also discussed. The results show that the optimum conditions for steam reforming can be achieved at reforming temperatures between 650 degrees C and 850 degrees C and at a steam to carbon molar (S/C) ratio of approximately 5. The recommended operation conditions for the SR of WFO8 are proposed to be T = 650 degrees C and S/C ratio = 5. Under these conditions, a hydrogen yield of 169.83 mol/kg WFO8 can be obtained with a CO concentration in the SG of 3.91% and trace CH4 (0.03%), without the risk of coke formation. Hydrogen production from autothermal systems can be optimized at temperatures of 600-800 degrees C, S/C ratios of 3-5, and O/C ratios of 0.0-0.5. Under these conditions, thermoneutrality is obtained with O/C ratios of 0391-0.455. The recommended thermoneutral conditions are S/C = 5, T = 600 degrees C and O/C = 0.453. Under these conditions, 146.45 mol H-2/kg WFO8 can be produced with only 2.89% CO and 0.06% CH4 in the synthesis gas. The effect of frying time of soybean WFO on hydrogen productivity is shown to be negligible

    Optimization of operating parameters of a fixed bed gasifier for power generation

    No full text
    International audienceThe demand for energy in our daily life is increasing day by day due to the growth of the population and of theeconomy. The renewable energy sources offer attractive prospects because they are unlimited and cheap(Akinbami et al, 2001). Biomass is the most abundant and most versatile of the primary sources of renewableenergy mainly when it is compared to other renewable sources (solar, wind, hydro wave, geothermal). It can beconverted to a variety of usable forms of energy such as syngas, biogas and liquid transportation biofuels (Convertiet al., 2009) ..

    A comparative study on energetic and exergetic assessment of hydrogen production from bioethanol via steam reforming, partial oxidation and auto-thermal reforming processes

    No full text
    International audienceThree known types of ethanol reforming processes, ethanol steam reforming (ESR), partial oxidation (PDX) and auto-thermal reforming (ATR), are investigated. Favorable operating conditions are identified for each reaction system to maximize the production of hydrogen from bioethanol. Each process consists of three sections: the main reactor (ESR, PDX or AIR), the CO clean-up section comprised of the water gas shift reactor and preferential CO oxidation reactor and finally, the purification section. The performances of these processes are evaluated through mass, energy and exergy analyses. The material balances show that the total amount of ethanol required to generate 1 mol of hydrogen is 0.23 mol for the ATR, 0.24 mol for the PDX and 0.25 mol for the ESR. The ATR reforming process is shown to have the highest energetic efficiency, i.e., the lowest amount of energy is consumed to produce the same amount of hydrogen from ethanol. Moreover, the AIR process has the best exergetic performance, as it presents the highest ratio of exergy recovered in the hydrogen stream to the total exergy supplied to the system. For all three of the systems, the exergy destruction occurs mainly in the reformer due to the high irreversibility of the reaction
    corecore