32 research outputs found

    Size-dependent foraging gene expression and behavioral caste differentiation in Bombus ignitus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In eusocial hymenopteran insects, <it>foraging </it>genes, members of the cGMP-dependent protein kinase family, are considered to contribute to division of labor through behavioral caste differentiation. However, the relationship between <it>foraging </it>gene expression and behavioral caste in honeybees is opposite to that observed in ants and wasps. In the previously examined eusocial Hymenoptera, workers behave as foragers or nurses depending on age. We reasoned that examination of a different system of behavioral caste determination might provide new insights into the relationship between <it>foraging </it>genes and division of labor, and accordingly focused on bumblebees, which exhibit size-dependent behavioral caste differentiation. We characterized a <it>foraging </it>gene (<it>Bifor</it>) in bumblebees (<it>Bombus ignitus</it>) and examined the relationship between <it>Bifor </it>expression and size-dependent behavioral caste differentiation.</p> <p>Findings</p> <p>A putative open reading frame of the <it>Bifor </it>gene was 2004 bp in length. It encoded 668 aa residues and showed high identity to orthologous genes in other hymenopterans (85.3-99.0%). As in ants and wasps, <it>Bifor </it>expression levels were higher in nurses than in foragers. <it>Bifor </it>expression was negatively correlated with individual body size even within the same behavioral castes (regression coefficient = -0.376, P < 0.001, all individuals; -0.379, <it>P </it>= 0.018, within foragers).</p> <p>Conclusion</p> <p>These findings indicate that <it>Bifor </it>expression is size dependent and support the idea that <it>Bifor </it>expression levels are related to behavioral caste differentiation in <it>B. ignitus</it>. Thus, the relationship between <it>foraging </it>gene expression and behavioral caste differentiation found in ants and wasps was identified in a different system of labor determination.</p

    FRET probe for detecting two mutations in one EGFR mRNA

    Get PDF
    Technologies for visualizing and tracking RNA are essential in molecular biology, including in disease-related fields. In this study, we propose a novel probe set (DAt-probe and T-probe) that simultaneously detects two mutations in the same RNA using fluorescence resonance energy transfer (FRET). The DAt-probe carrying the fluorophore Atto488 and the quencher Dabcyl were used to detect a cancer mutation (exon19del), and the T-probe carrying the fluorophore Tamra was used to detect drug resistance mutations (T790M) in epidermal growth factor receptor (EGFR) mRNA. These probes were designed to induce FRET when both mutations were present in the mRNA. Gel electrophoresis confirmed that the two probes could efficiently bind to the mutant mRNA. We measured the FRET ratios using wild-type and double-mutant RNAs and found a significant difference between them. Even in living cells, the FRET probe could visualize mutant RNA. As a result, we conclude that this probe set provides a method for detecting two mutations in the single EGFR mRNA via FRET

    Evolution of asexual Daphnia pulex in Japan: variations and covariations of the digestive, morphological and life history traits

    No full text
    Abstract Background Several genetic lineages of obligate parthenogenetic Daphnia pulex, a common zooplankton species, have invaded Japan from North America. Among these, a lineage named JPN1 is thought to have started colonization as a single genotype several hundred to thousand years ago and subsequently produced many genotypes in Japan. To examine the phenotypic variations due to ecological drivers diverging the genotypes in new habitats, we measured heritability and variation in 17 traits, including life history, morphology and digestive traits, and the genetic distance among the D. pulex JPN1 genotypes in Japan. Results We found that most of the traits measured varied significantly among the genotypes and that heritability was highest in the morphological traits, followed by the digestive and life history traits. In addition, 93% of the variation in these traits was explained by the first three components in the principal component analysis, implying that variation of these heritable traits is not random but rather converged into a few directions. These relations among traits revealed the potential importance of predation pressures and food conditions as factors for diverging and selecting different genotypes. However, the magnitude of the difference in any single trait group did not correlate with the genetic distance. Conclusions Our findings show that the divergent traits evolved within D. pulex JPN1 lineage without genetic recombination, since their ancestral clone invaded Japan. Large variations and covariations of the phenotypic traits, irrespective of the genetic distance among the genotypes, support the view that the invasive success of D. pulex JPN1 was promoted by a genetic architecture that allowed for large phenotypic variations with a limited number of functionally important mutations without recombination

    Data from: Effects of light environment during growth on the expression of cone opsin genes and behavioral spectral sensitivities in guppies (Poecilia reticulata)

    No full text
    Background: The visual system is important for animals for mate choice, food acquisition, and predator avoidance. Animals possessing a visual system can sense particular wavelengths of light emanating from objects and their surroundings and perceive their environments by processing information contained in these visual perceptions of light. Visual perception in individuals varies with the absorption spectra of visual pigments and the expression levels of opsin genes, which may be altered according to the light environments. However, which light environments and the mechanism by which they change opsin expression profiles and whether these changes in opsin gene expression can affect light sensitivities are largely unknown. This study determined whether the light environment during growth induced plastic changes in opsin gene expression and behavioral sensitivity to particular wavelengths of light in guppies (Poecilia reticulata). Results: Individuals grown under orange light exhibited a higher expression of long wavelength-sensitive (LWS) opsin genes and a higher sensitivity to 600-nm light than those grown under green light. In addition, we confirmed that variations in the expression levels of LWS opsin genes were related to the behavioral sensitivities to long wavelengths of light. Conclusions: The light environment during the growth stage alters the expression levels of LWS opsin genes and behavioral sensitivities to long wavelengths of light in guppies. The plastically enhanced sensitivity to background light due to changes in opsin gene expression can enhance the detection and visibility of predators and foods, thereby affecting survival. Moreover, changes in sensitivities to orange light may lead to changes in the discrimination of orange/red colors of male guppies and might alter female preferences for male color patterns

    BehavioralSensitivities

    No full text
    Behavioral sensitivities to four wave length of light measured by optomotor responses using individual guppies grown under green or orange light environment

    Adjusting the Structure of a Peptide Nucleic Acid (PNA) Molecular Beacon and Promoting Its DNA Detection by a Hybrid with Quencher-Modified DNA

    No full text
    In this study, we performed an elaborate adjustment of the structure of peptide nucleic acid (PNA) molecular beacons as probes for detecting nucleic acids. We synthesized the PNA beacons with various numbers of Glu, Lys, and dabcyl (Dab) quenchers in them, and we investigated their fluorescence changes (F1/1/F0) with and without full-match DNA. As the numbers of Glu/Lys or Dab increased, the F1/1/F0 tended to decrease. Among the different beacons, the PNA beacon with one Glu and one Lys (P1Q1) showed the largest F1/1/F0. On the other hand, a relatively large F1/1/F0 was obtained when the number of Glu/Lys and the number of Dab were the same, and the balance between the numbers of Glu/Lys and Dab seemed to affect the F1/1/F0. We also investigated the DNA detection by the prehybrid of P1Q1, which consists of the T790M base sequence, [P1Q1(T790M)], with quencher-modified DNA (Q-DNA). We examined the DNA detection with single-base mismatch by P1Q1(T790M), and we clarified that there was difficulty in detecting the sequence with P1Q1 alone, but that the sequence was successfully detected by the prehybrid of P1Q1 with the Q-DNA
    corecore