35 research outputs found

    Decomposition, approximation, and coloring of odd-minor-free graphs

    Get PDF
    We prove two structural decomposition theorems about graphs excluding a fixed odd minor H, and show how these theorems can be used to obtain approximation algorithms for several algorithmic problems in such graphs. Our decomposition results provide new structural insights into odd-H-minor-free graphs, on the one hand generalizing the central structural result from Graph Minor Theory, and on the other hand providing an algorithmic decomposition into two bounded-treewidth graphs, generalizing a similar result for minors. As one example of how these structural results conquer difficult problems, we obtain a polynomial-time 2-approximation for vertex coloring in odd-H-minor-free graphs, improving on the previous O(jV (H)j)-approximation for such graphs and generalizing the previous 2-approximation for H-minor-free graphs. The class of odd-H-minor-free graphs is a vast generalization of the well-studied H-minor-free graph families and includes, for example, all bipartite graphs plus a bounded number of apices. Odd-H-minor-free graphs are particularly interesting from a structural graph theory perspective because they break away from the sparsity of H- minor-free graphs, permitting a quadratic number of edges

    Basic Network Creation Games

    Get PDF
    We study a natural network creation game, in which each node locally tries to minimize its local diameter or its local average distance to other nodes, by swapping one incident edge at a time. The central question is what structure the resulting equilibrium graphs have, in particular, how well they globally minimize diameter. For the local-average-distance version, we prove an upper bound of 2O(√ lg n), a lower bound of 3, a tight bound of exactly 2 for trees, and give evidence of a general polylogarithmic upper bound. For the local-diameter version, we prove a lower bound of Ω(√ n), and a tight upper bound of 3 for trees. All of our upper bounds apply equally well to previously extensively studied network creation games, both in terms of the diameter metric described above and the previously studied price of anarchy (which are related by constant factors). In surprising contrast, our model has no parameter α for the link creation cost, so our results automatically apply for all values of alpha without additional effort; furthermore, equilibrium can be checked in polynomial time in our model, unlike previous models. Our perspective enables simpler and more general proofs that get at the heart of network creation games

    Optimal Algorithms for Free Order Multiple-Choice Secretary

    Full text link
    Suppose we are given integer knk \leq n and nn boxes labeled 1,,n1,\ldots, n by an adversary, each containing a number chosen from an unknown distribution. We have to choose an order to sequentially open these boxes, and each time we open the next box in this order, we learn its number. If we reject a number in a box, the box cannot be recalled. Our goal is to accept the kk largest of these numbers, without necessarily opening all boxes. This is the free order multiple-choice secretary problem. Free order variants were studied extensively for the secretary and prophet problems. Kesselheim, Kleinberg, and Niazadeh KKN (STOC'15) initiated a study of randomness-efficient algorithms (with the cheapest order in terms of used random bits) for the free order secretary problems. We present an algorithm for free order multiple-choice secretary, which is simultaneously optimal for the competitive ratio and used amount of randomness. I.e., we construct a distribution on orders with optimal entropy Θ(loglogn)\Theta(\log\log n) such that a deterministic multiple-threshold algorithm is 1O(logk/k)1-O(\sqrt{\log k/k})-competitive. This improves in three ways the previous best construction by KKN, whose competitive ratio is 1O(1/k1/3)o(1)1 - O(1/k^{1/3}) - o(1). Our competitive ratio is (near)optimal for the multiple-choice secretary problem; it works for exponentially larger parameter kk; and our algorithm is a simple deterministic multiple-threshold algorithm, while that in KKN is randomized. We also prove a corresponding lower bound on the entropy of optimal solutions for the multiple-choice secretary problem, matching entropy of our algorithm, where no such previous lower bound was known. We obtain our algorithmic results with a host of new techniques, and with these techniques we also improve significantly the previous results of KKN about constructing entropy-optimal distributions for the classic free order secretary

    Online Weighted Degree-Bounded Steiner Networks via Novel Online Mixed Packing/Covering

    Get PDF
    We design the first online algorithm with poly-logarithmic competitive ratio for the edge-weighted degree-bounded Steiner forest (EW-DB-SF) problem and its generalized variant. We obtain our result by demonstrating a new generic approach for solving mixed packing/covering integer programs in the online paradigm. In EW-DB-SF, we are given an edge-weighted graph with a degree bound for every vertex. Given a root vertex in advance, we receive a sequence of terminal vertices in an online manner. Upon the arrival of a terminal, we need to augment our solution subgraph to connect the new terminal to the root. The goal is to minimize the total weight of the solution while respecting the degree bounds on the vertices. In the offline setting, edge-weighted degree-bounded Steiner tree (EW-DB-ST) and its many variations have been extensively studied since early eighties. Unfortunately, the recent advancements in the online network design problems are inherently difficult to adapt for degree-bounded problems. In particular, it is not known whether the fractional solution obtained by standard primal-dual techniques for mixed packing/covering LPs can be rounded online. In contrast, in this paper we obtain our result by using structural properties of the optimal solution, and reducing the EW-DB-SF problem to an exponential-size mixed packing/covering integer program in which every variable appears only once in covering constraints. We then design a generic integral algorithm for solving this restricted family of IPs. As mentioned above, we demonstrate a new technique for solving mixed packing/covering integer programs. Define the covering frequency k of a program as the maximum number of covering constraints in which a variable can participate. Let m denote the number of packing constraints. We design an online deterministic integral algorithm with competitive ratio of O(k*log(m)) for the mixed packing/covering integer programs. We prove the tightness of our result by providing a matching lower bound for any randomized algorithm. We note that our solution solely depends on m and k. Indeed, there can be exponentially many variables. Furthermore, our algorithm directly provides an integral solution, even if the integrality gap of the program is unbounded. We believe this technique can be used as an interesting alternative for the standard primal-dual techniques in solving online problems

    Bicovering: Covering Edges With Two Small Subsets of Vertices

    Get PDF

    New streaming algorithms for parameterized maximal matching & beyond

    Get PDF
    Very recently at SODA'15 [2], we studied maximal matching via the framework of parameterized streaming, where we sought solutions under the promise that no maximal matching exceeds k in size. In this paper, we revisit this problem and provide a much simpler algorithm for this problem. We are also able to apply the same technique to the Point Line Cover problem [3]

    Fixed-Parameter Tractability and Approximability: A Survey of Connections

    No full text
    In this talk we discuss briefly classes of fixed-parameter tractability as well as approximation algorithms and we survey several connections between the two areas in terms of both results and approaches.Non UBCUnreviewedAuthor affiliation: University of Maryland at College ParkPostdoctora
    corecore