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Abstract
We study the following basic problem called Bi-Covering. Given a graph G(V,E), find two (not
necessarily disjoint) sets A ⊆ V and B ⊆ V such that A ∪ B = V and that every edge e
belongs to either the graph induced by A or to the graph induced by B. The goal is to minimize
max{|A|, |B|}. This is the most simple case of the Channel Allocation problem [Gandhi et. al,
Networks, 2006]. A solution that outputs V, ∅ gives ratio at most 2. We show that under the
similar Strong Unique Game Conjecture by [Bansal-Khot, FOCS, 2009] there is no 2 − ε ratio
algorithm for the problem, for any constant ε > 0.

Given a bipartite graph, Max-bi-clique is a problem of finding largest k × k complete bi-
partite sub graph. For Max-bi-clique problem, a constant factor hardness was known under
random 3-SAT hypothesis of Feige [Feige, STOC, 2002] and also under the assumption that
NP * ∩ε>0 BPTIME(2nε) [Khot, SIAM J. on Comp., 2011]. It was an open problem in [Ambühl
et. al., SIAM J. on Comp., 2011] to prove inapproximability of Max-bi-clique assuming weaker
conjecture. Our result implies similar hardness result assuming the Strong Unique Games Con-
jecture.

On the algorithmic side, we also give better than 2 approximation for Bi-Covering on numer-
ous special graph classes. In particular, we get 1.876 approximation for Chordal graphs, exact
algorithm for Interval Graphs, 1 + o(1) for Minor Free Graph, 2−4δ/3 for graphs with minimum
degree δn, 2/(1+δ2/8) for δ-vertex expander, 8/5 for Split Graphs, 2−(6/5) ·1/d for graphs with
minimum constant degree d etc. Our algorithmic results are quite non-trivial. In achieving these
results, we use various known structural results about the graphs, combined with the techniques
that we develop tailored to getting better than 2 approximation.
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6:2 Bicovering: Covering Edges With Two Small Subsets of Vertices

1 Introduction

We study the Bi-Covering problem - Given a graph G(V,E), find two (not necessarily
disjoint) sets A,B ⊆ V such that A∪B = V and that every edge e ∈ E belongs to either the
graph induced by A or to the graph induced by B. The goal is to minimize max{|A|, |B|}.

The problem we study is closely related to the problem of Channel Allocation which was
studied in [10]. The Channel Allocation Problem can be described as follows: there is a
universe of topics, a fixed number of channels and a set of requests where each request is a
subset of topics. The task is to send a subset of topics through each channel such that each
request is satisfied by set of topics from one of the channel i.e. for every request there must
exists at least one channel such that the set of topics present in that channel is a superset of
the set of topics from the request. Of course, one can achieve this task trivially by sending
all topics through one channel. But, the optimization version of Channel Allocation Problem
asks for a way to satisfy all the request by minimizing the maximum number of topics sent
through a channel.

Any connected undirected graph G(V,E) on n vertices and m edges along with an integer
k can be viewed as a special case of channel allocation problem - The set of topics is a set of
n vertices, each edge represents a request, where the requested set of topics corresponding to
an edge is a pair of its endpoints and the number of channels is k. If we fix the number of
channels to k = 2 then the optimization problem exactly corresponds to the Bi-Covering
problem. Specifically, the optimization problem asks for two subsets A and B of V minimizing
max{|A|, |B|} such that A ∪B = V and every edge is totally contained in a graph induced
by either A or B.

2 Our Results

Getting 2 approximation for Bi-Covering problem is trivial (by setting A = B = V). We
show that Bi-Covering problem is hard to approximate within any factor strictly less
than 2 assuming a strong Unique Games Conjecture (UGC) similar to the one in [5] (see
Conjecture 12).

I Theorem 1. Let ε > 0 be any small constant. Assuming a strong Unique Games Conjecture
(Conjecture 12), given a graph G(V,E), it is NP-hard to distinguish between following two
cases:
1. G has Bi-Covering of size at most (1/2 + ε)|V |.
2. Any Bi-Covering of G has size at least (1− ε)|V |.
In particular, it is NP-hard (assuming strong UGC) to approximate Bi-Covering within a
factor 2− ε for every ε > 0.

Given this structural hardness result, we get a 3
2 − ε hardness of Bi-Covering restricted

to bipartite graphs by transforming a hard instance from Theorem 1 into a bipartite graph
in a natural way (getting a 3

2 -approximation is easy - given a bipartite graph on X and Y
with |X| ≥ |Y |, one can take arbitrary partition X into two equal sized parts X1 and X2
and set the Bi-Covering to be X1 ∪ Y and X2 ∪ Y ).

I Theorem 2. Assuming the strong Unique Games Conjecture, for every ε > 0, Bi-Covering
is NP-hard to approximate within a factor 3

2 − ε for bi-partite graphs.

Our Theorem 1 implies hardness result for the following well known problem:

Max-Bi-Clique problem is as follows:
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Input: A bipartite graph G(X,Y,E) with |X| = |Y | = n.
Output: Find largest k such that there exists two subsets A ⊆ X,B ⊆ Y of size k and the
graph induced on (A,B) is a complete bipartite graph.

Inapproximability of Max-Bi-Clique problem has been studied extensively [1, 6, 8, 13].
Feige[8] showed that using an assumption of average case hardness of 3SAT instance, Max-
Bi-Clique cannot be approximated within any constant factor in polynomial time (and
hence within nδ for some δ > 0 using known amplification technique [1, 6]). Feige-Kogan [9]
showed that assuming SAT /∈ DTIME(2n3/4+ε) there is no 2(logn)δ approximation for Max-
Bi-Clique. They also showed that it is NP-hard to approximate Max-Bi-Clique within any
constant factor assuming Max−Clique (finding a maximum sized clique in a graph) does not
have a n/2c

√
logn-approximation. Khot [13] later proved a similar inapproximability result

but assuming NP * ∩ε>0 BPTIME(2nε) using a quasi-random PCP. It is an important open
problem to extend similar hardness results based on weaker complexity assumptions [2]. In
particular, it is still not known if UGC implies a constant factor hardness for Max-Bi-Clique.
A straightforward corollary from Theorem 1 (see 4.2.2) implies that we get similar hardness
results for Max-Bi-Clique based on Conjecture 12.

I Corollary 3. Assuming strong Unique Games Conjecture, it is NP-hard to approximate
Max-Bi-Clique within any constant factor.

As mentioned above, the hardness factor can be boosted to nδ for some δ > 0 using known
techniques. (such as described in [1, 6])

UGC and strong UGC

Unique games conjecture so far helped in understanding the tight inapproximability factors
of many problems including, but not limited to, Vertex Cover [14], optimal algorithm for
every Max-CSP[16], Ordering CSPs[11], characterizing strong approximation resistance of
CSPs[15] etc. The inherent difficulty in showing hardness results assuming Unique Games
Conjecture for the problems that we study is that we need some kind of expansion
property on the unique games instance which it lacks. It is shown that Unique Games are
easy when the constraint graph is an expander[4]. In general, in [3] it is shown that Unique
Games are easy when a normalized adjacency matrix of a constraint graph has very few
eigenvalues close to 1. So the natural direction is to modify the unique games instance to
get some expansion property but weak enough so that it is not tractable by the techniques
of [4], [3]. A similar Strong Unique Games Conjecture, which has a weak expansion
property, has been used earlier in [5] and [17] to show inapproximability results for minimizing
weighted completion time on a single machine with precedence constraints and minimizing
makespan in precedence constrained scheduling on identical machines respectively. Our result
adds another interesting implication of Unique Games Conjecture with weak expansion
property, namely inapproximability of Max-Bi-Clique and Bi-Covering. We hope that
our results will help motivate study of Strong Unique Games Conjecture and ultimately
answering the question about its equivalence to the Unique Games Conjecture.

Algorithmic Results

We give better than 2 approximation for Bi-Covering on numerous special graph classes.

Graph types. A δ-vertex expander is a graph so that for every S of size |S| ≤ n/2,
N1(S) ≥ δn, where N1(S) is the set of neighbors of S not in S. A chordal graph is a graph
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6:4 Bicovering: Covering Edges With Two Small Subsets of Vertices

that does not contain a cycle of size at least 4 as an induced subgraph. A split graph is
a graph whose vertex set is a union of a Clique and and independent set, with arbitrarily
connections between the clique and the independent set.

A minor of a graph is any subgraph G′ that can be derived from G by contracting and
removing edges. A minor free graph is a graph that does not contain some constant size
graph H as a minor.

An interval graph is the intersection graph of a family of intervals on the real line. It
has one vertex for each interval in the family, and an edge between every pair of vertices
corresponding to intervals that intersect.

The algorithmic results can be summarized in the following theorem.

I Theorem 4. The Bi-Covering problem admits polynomial time algorithms that attain
the following ratios (Graph type: approximation ratio):
1. Chordal graphs : 1.876.
2. Interval Graphs: exact O(n5) time algorithm.
3. Minor Free Graph: 1 + o(1).
4. Graph with minimum degree δn: 2− 4δ/3 .
5. δ-vertex expander Graph: 2/(1 + δ2/8).
6. Split Graphs : 8/5.
7. Graphs with minimum degree d: 2− (6/5) · 1/d.

Our algorithms are quite non-trivial. Most of our algorithmic results relies on the fact
that if we can find two disjoint sets each of size at least εn with no edges in between, then
this itself gives 2− ε approximation. To get better bound on ε in some special cases we use
known theorems related to the structural results of graphs, size of separator, lower bound
on independent set size etc. In some of the cases, we create a bipartite graph from a given
graph instance and show that the vertex cover in the bipartite graph is small. We then use
the bound on the size of vertex cover to find a better bi-covering of the edges in a graph.

3 Organization

In Section 4, we prove the main inapproximability of Bi-Covering and related problems.
We refer to the full version of the paper for algorithmic results.

4 Inapproximability of Bi-Covering

The Bi-Covering problem is:

Input: A graph G(V,E)
Output: Two subsets A,B ⊆ V such that A ∪ B = V and every edge (u, v) ∈ E either
{u, v} ⊆ A or {u, v} ⊆ B. Minimize max{|A|, |B|}.

The optimal value of a Bi-Covering on instance G(V,E) is always at least |V |/2 and
hence getting a 2-approximation for this problem is trivial by setting A = V and B = ∅. In
order to beat 2-approximation, one should be able to solve the following weaker problem.

Problem

For small enough ε > 0, given an undirected graph G(V,E), distinguish between the following
two cases:
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1. There exists two disjoint sets A,B ⊆ V , |A|, |B| ≥ (1/2 − ε)|V | such that there are no
edges between A and B.

2. There exists no two disjoint sets A,B ⊆ V |A|, |B| ≥ ε|V | such that there are no edges
between A and B.

In this section, we show that it is UG-Hard to distinguish between (1) and (2) for any
constant ε > 0 proving Theorem 1.

4.1 Preliminaries
Let q be any prime for convenience. We are interested in space of functions from Fnq to R.
Define inner product on this space as 〈f, g〉 = 1

qn

∑
x∈Fnq

f(x)g(x). Let ωq be the qth root of
unity. For a vector α ∈ Fnq , we will denote αi the ith coordinate of vector α. The Fourier
decomposition of a function f : Fnq → R is given as

f(x) =
∑
α∈Fnq

f̂(α)χα(x)

where χα(x) := ω
〈α,x〉
q and a Fourier coefficient f̂(α) := 〈f, χα〉.

I Definition 5 (Symmetric Markov Operator). Symmetric Markov operator on Fq can be
thought of as a random walk on an undirected graph with the vertex set Fq. It can be
represented as a q × q matrix T where (i, j) th entry is the probability of moving to vertex j
from i.

I Definition 6. For a symmetric Markov operator T , let 1 = λ0 ≥ λ1 ≥ λ2 . . . ≥ λq−1 be
the eigenvalues of T in a non-increasing order. The spectral radius of T , denoted by r(T ), is
defined as:

r(T ) = max{|λ1|, |λq−1|} .

For a Markov operator T the condition r(T ) < 1 is equivalent to saying that the induced
regular graph (self-loop allowed) on Fq is non-bipartite and connected.

For T as above, we also define a Markov operator T⊗n on [q]n in a natural way i.e
applying a Markov operator T⊗n to x ∈ [q]n is same as applying the Markov operator T
on each xi independently. Note that if T is symmetric then T⊗n is also symmetric and
r(T⊗n) = r(T ).

I Definition 7 (Influence). Let f : Fnq → R be a function. the influence of the i′th variable
on f , denoted by Inf i(f) is defines as:

Inf i(f) = E[Varxi [f(x)|x1, x2, . . . , xi−1, xi+1, . . . , xn]]

where x1, . . . , xn are uniformly distributed. In terms of Fourier coefficients, it has the
following formula:

Inf i(f) =
∑
αi 6=0

f̂(α)2.

The low-level (level k) influence of i′th variable is defined as:

Inf≤ki (f) =
∑

αi 6=0,|α|≤k

f̂(α)2.

where |α| is the number of non-zero co-ordinates in α.
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6:6 Bicovering: Covering Edges With Two Small Subsets of Vertices

We will need the following Gaussian stability measure in our analysis:

I Definition 8. Let φ : R→ [0, 1] be the cumulative distribution function of the standard
Gaussian random variable. For a parameter ρ, µ, ν ∈ [0, 1], we define the following two
quantities:

Γρ(µ, ν) = Pr[X ≤ φ−1(µ), Y ≥ φ−1(1− ν)]

Γρ(µ, ν) = Pr[X ≤ φ−1(µ), Y ≤ φ−1(ν)]

where X and Y are two standard Gaussian variables with covariance ρ.

We are now ready to state the invariance principle from [7] that we need for our reduction.

I Theorem 9 ([7]). Let T be a symmetric Markov operator on Fq such that ρ = r(T ) < 1.
Then for any τ > 0 there exists δ > 0 and k ∈ N such that if f, g : Fnq → [0, 1] are two
functions satisfying

min(Inf≤ki (f), Inf≤ki (g)) ≤ δ

for all i ∈ [n], then it holds that

〈f, T⊗ng〉 ≥ Γρ(µ, ν)− τ

where µ = E[f ], ν = E[g].

Our hardness result is based on a variant of Unique Games conjecture. First, we define
what the Unique game is:

I Definition 10 (Unique Game). An instance G = (U, V,E, [L], {πe}e∈E) of the Unique
Game constraint satisfaction problem consists of a bi-regular bipartite graph (U, V,E), a
set of alphabets [L] and a permutation map πe : [L] → [L] for every edge e ∈ E. Given a
labeling ` : U ∪ V → [L], , an edge e = (u, v) is said to be satisfied by ` if πe(`(v)) = `(u).

G is said to be at most δ-satisfiable if every labeling satisfies at most a δ fraction of the
edges.

The following is a conjecture by Khot [12] which has been used to prove many tight
inapproximability results.

I Conjecture 11 (Unique Games Conjecture [12]). For every sufficiently small δ > 0
there exists L ∈ N such that the following holds. Given a an instance G = (U, V,E, [L],
{πe}e∈E) of Unique Game it is NP-hard to distinguish between the following two cases:

YES case: There exist an assignment that satisfies at least (1− δ) fraction of the edges.
NO case: Every assignment satisfies at most δ fraction of the edge constraints.

Our hardness results are based on the following stronger conjecture which is similar to the
one in Bansal-Khot [5]. We refer readers to [5] for more discussion on comparison between
these two conjectures.

I Conjecture 12 (Strong Unique Games Conjecture). For every sufficiently small
δ, γ, η > 0 there exists L ∈ N such that the following holds: Given an instance G =
(U, V,E, [L], {πe}e∈E) of Unique Game which is bi-regular, it is NP-hard to distinguish
between the following two cases:
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bq/2c+1
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q-4

q-3
q-2

q-1

0

Figure 1 Gadget.

YES case: There exist sets V ′ ⊆ V such that |V ′| ≥ (1− η)|V | and an assignment that
satisfies all edges connected to V ′.
NO case: Every assignment satisfies at most γ fraction of the edge constraints. Moreover,
the instance satisfies the following expansion property. For every set S ⊆ V , |S| = δ|V |,
we have |Γ(S)| ≥ (1− δ)|U |, where Γ(S) := {u ∈ U | ∃v ∈ Ss.t.(u, v) ∈ E}.

I Remark. We would like to point out that the above conjecture differs from the one in
[5] in the completeness case. In [5], the Yes instance has a guarantee that there exists sets
V ′ ⊆ V,U ′ ⊆ U with |V ′| ≥ (1− η)|V |, |U ′| ≥ (1− η)|U | such that all edges between V ′ and
U ′ are satisfied.

4.2 (2 − ε)-inapproximability
In order to prove the (2− ε) hardness, we first start with a dictatorship test that we will use
as a gadget in the actual reduction.

4.2.1 Dictatorship Test
We design a dictatorship test for the problem Bi-Covering. We are interested in functions
f : Fnq → R. f is called a dictator if it is of the form f(x1, x2, . . . , xn) = xi for some i ∈ [n].

4.2.1.1 Dictatorship gadget

For convenience, we will let q > 2 be any prime number for the description of the dictatorship
gadget. Let G(Fq, E) be a 3-regular graph on Fq (where we identify the elements of Fq by
{0, 1, . . . . , q − 1}) with self loops as shown in figure 1:

It is constructed as follows : Take a cycle on 0, 1, 2, . . . , q − 1, 0, then add a self loop
to every vertex except to the vertex 0. Remove the edge (bq/2c, bq/2c + 1), add an edge

ICALP 2016



6:8 Bicovering: Covering Edges With Two Small Subsets of Vertices

(0, bq/2c). Finally, to make it 3-regular, add a self loop to the vertex bq/2c + 1. This
completes the description of graph G. Since the graph G is connected and non-bipartite, the
symmetric Markov operator T defined by the random walk in G has r(T ) < 1. One crucial
thing about G is that it has two large disjoint subsets of vertices, namely {1, 2, . . . , bq/2c}
and {bq/2c+ 1.bq/2c+ 2, . . . , q − 1}, with no edges in between.

Consider the vertex set V = FRq for some constant R. We will construct a graph H on V
as follows : (x, y) ∈ (FRq )2 forms an edge in H iff they satisfy the following condition:

∀i ∈ [R], (xi, yi) ∈ E ,

x is adjacent to y iff T⊗R(x↔ y) 6= 0.

4.2.1.2 Completeness

Let f : FRq → R be any dictator, say ith dictator i.e. f(x) = xi. By letting set A to be
f−1(0) ∪ f−1(1) ∪ . . . ∪ f−1(bq/2c) and set B to be f−1(0) ∪ f−1(bq/2c+ 1) ∪ f−1(bq/2c+
2)∪ . . .∪ f−1(q− 1), it can be seen easily that there is no edge between sets A \B and B \A.
More precisely,

A \B = {x ∈ FRq | xi ∈ {1, 2, . . . , bq/2c}
B \A = {y ∈ FRq | yi ∈ {bq/2c+ 1, bq/2c+ 2, . . . , q − 1}}

By the property of Markov operator T⊗R, (x, y) are not adjacent if (xi, yi) /∈ E for some
i ∈ [R]. Hence, there are no edges between A \B and B \A. Thus, the optimal value is at
most

1
|V |
·max{|A|, |B|} = 1

2 + 1
2q .

4.2.1.3 Soundness

Let A,B ⊆ V such that A ∪B = V and f, g : FRq → {0, 1} be the indicator functions of sets
A \B and B \A respectively. Suppose |A \B| = ε|V | and |B \A| = ε|V | for some ε > 0 and
that there are no edges in between A \B and B \A. We will show that in this case, f and g
must have a common influential co-ordinate. Since, there are no edges between these sets,
we have

E
x∼FRq ,

y∼T⊗R(x)

[f(x)g(y)] = 〈f, T⊗Rg〉 = 0 .

For the application of Invariance principle, Theorem 9, in our case we have E[f ] = E[g] =
ε > 0 and ρ = r(T ) < 1. Thus, for small enough τ := τ(ρ, ε) > 0,

Γρ(ε, ε)− τ > 0.

We can now apply Theorem 9 to conclude that there exists i ∈ [R] and k ∈ N independent of
R such that

min(Inf≤ki (f), Inf≤ki (g)) ≥ δ,

for some δ(τ) > 0. Hence, unless f and g have a common influential co-ordinate, 1
|V | ·

max{|A|, |B|} ≥ 1− ε. Thus, the optimum value is at least 1− ε
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4.2.2 Actual Reduction
The above dictatorship test for large enough q can be composed with the Unique Games
instance having some stronger guarantee (Conjecture 12) in a straightforward way that gives
(2− ε) hardness for every constant ε > 0 assuming UGC. Details as follows:

Let G = (U, V,E, [L], {πe}e∈E) be the given instance of Unique Game with parameters
δ < ε

4 , γ, η > 0 from Conjecture 12 . We replace each vertex v ∈ V by a block of qL vertices,
namely by a hypercube [q]L. We will denote this block by [v]. As defined in the dictatorship
test, let G be the graph on Fq and T be the induced symmetric Markov operator. For every
pair of edges e1(u, v1) and e2(u, v2) in G, we will add the following edges between [v1] and
[v2] : Let π1 and π2 be the permutation constraint associated with e1 and e2 respectively.
x ∈ [v1] and y ∈ [v2] are connected by an edge iff T⊗L((x ◦ π−1

1 ) ↔ (y ◦ π−1
2 )) 6= 0 (where

(x ◦ π−1)i = xπ−1(i) for all i ∈ [L]) i.e. for every i ∈ [L], xπ−1
1 (i) and yπ−1

2 (i) are connected by
an edge in graph G. This completes the description of a graph. Let’s denote this graph by
H.

I Lemma 13 (Completeness). If there exists an assignment to vertices in G that satisfies all
edges connected to (1− η) fraction of vertices in V then H has a Bi-Covering of size at
most (1− η)(1/2 + 1/2q) + η.

Proof. Fix a labeling ` such that for at least (1− η) fraction of vertices in V in G, all edges
attached to them are satisfied. Suppose X be the set of remaining η fraction of vertices of V
in G. For every vertex v ∈ V , consider the following two partitions of [v]:

Av = {x ∈ [q]L : x`(v) ∈ {1, . . . , bq/2c}}
Bv = {x ∈ [q]L : x`(v) ∈ {bq/2c}+ 1, bq/2c}+ 2, . . . , q}}
Cv = {x ∈ [q]L : x`(v) = 0}

Let A = ∪v∈V (Av ∪ Cv) ∪z∈X [z] and B = ∪v∈V (Bv ∪ Cv) ∪z∈X [z]. The claim is that
this is the required edge separating sets. To see this, consider any vertex pair (a, b) such
that a ∈ A \ B and b ∈ B \ A. We need to show that (a, b) must not be adjacent in H.
Suppose a ∈ [v1] and b ∈ [v2]. If v1 and v2 don’t have a common neighbor then clearly, there
is no edge between a and b. Suppose they have a common neighbor u and let e1 = (u, v1)
and e2 = (u, v2) be the edges and π1 and π2 be the associated permutation constraints.
Since X ⊆ A ∩ B, v1, v2 /∈ X. Hence ` satisfies all constraints associated with v1 and
v2. In particular, π1(`(v1)) = π2(`(v2)) =: j for some j ∈ [L]. Since a ∈ Av1 , we have
aπ−1

1 (j) = a`(v1) ∈ {1, . . . , bq/2c}}. Similarly, bπ−1
2 (j) ∈ {bq/2c} + 1, bq/2c} + 2, . . . , q}. By

the construction of edges in H, a and b are not adjacent.
For any v, |Av ∪ Cv| = |Bv ∪ Cv| = ( 1

2 + 1
2q )qL. Thus,

|A| = |B| ≤
(
η + (1− η)

(
1
2 + 1

2q

))
|V |qL . J

I Lemma 14 (Soundness). For every constant ε > 0, there exists a constant γ such that, if
G is at most γ-satisfiable then H has Bi-Covering of size at least 1− ε.

Proof. Suppose for contradiction, there exists an Bi-Covering of size at most (1− ε). This
means there exists two disjoint sets X,Y of size at least ε fraction of vertices in H such that
there are no edges in between X and Y . Let X∗ be the set of vertices in v ∈ V such that
[v] ∩X ≥ ε

2 |[v]|. Similarly, Y ∗ be the set of vertices in v ∈ V such that [v] ∩ Y ≥ ε
2 |[v]|. By

simple averaging argument, |X∗| ≥ ε
2 |V | and |Y

∗| ≥ ε
2 |V |.
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I Lemma 15. The total fraction of edges connected to X∗ whose other end point is in
Γ(X∗) ∩ Γ(Y ∗) is at least 1

2 .

Proof. Let G has left-degree d1 and right-degree d2. We have d1 = d2|V |
|U | . Suppose the

claim is not true, then at least 1
2 fraction of edges have there endpoint in U \ Γ(Y ∗). As,

|U \ Γ(Y ∗)| ≤ δ|U |, the average degree of a vertex in U \ Γ(Y ∗) is at least (1/2)d2|X∗|
δ|U | ≥

(d2/2)·(ε/2)|V |
δ|U | which is greater than d1 as ε > 4δ. J

For v ∈ X∗ ∪ Y ∗, let fv : [q]L → {0, 1} be the indicator function of a set [v] ∩ (X ∪ Y ).
Define the following label set for v ∈ X∗ ∪ Y ∗ for some τ ′ > 0 and k ∈ N:

F(v) := {i ∈ [L] | Inf≤ki (fv) ≥ τ ′} .

We have |F(v)| ≤ τ ′

k as
∑
i Inf≤ki (fv) ≤ k.

I Lemma 16. There exists a constant τ ′ := τ ′(q, ε) and k := k(q, ε) such that for every
u ∈ U and edges e1(u, v), e2(u,w) such that v ∈ X∗ and w ∈ Y ∗, we have

πe1(F(v)) ∩ πe2(F(w)) 6= ∅ .

Proof. As there are no edges between X and Y , we have

E
(x◦π−1

e1 )∼FLq ,
(y◦π−1

e2 )∼T⊗L(x◦π−1
e1 )

[fv(x ◦ π−1
e1

)fw(y ◦ π−1
e2

)] = 0 .

By the soundness analysis of the dictatorship test, it follows that there exists i ∈ [L] such
that

min(Inf≤k
π−1
e1 (i)(fv), Inf≤k

π−1
e2 (i)(fw)) ≥ τ ′,

for some τ ′, k as a function of q and ε. Thus, i ∈ πe1(F(v)) and i ∈ πe2(F(w)). J

J

4.2.2.1 Labeling

Fix τ ′ and k from Lemma 16. We now define a labeling ` to vertices in X∗ ⊆ V and in
Γ(X∗) ∩ Γ(Y ∗) ⊆ U as follows: For a vertex v ∈ X∗ set `(v) to be an uniformly random
label from F(v). For u ∈ Γ(X∗) ∩ Γ(Y ∗), select an arbitrary neighbor w of u in Y ∗ and set
`(u) to be an uniformly random label from the set π(u,w)(F(w)) of size at most k

τ ′ . Fix an
edge (u, v) such that u ∈ Γ(X∗) ∩ Γ(Y ∗) and v ∈ X∗. By Lemma 16, for any w ∈ Y ∗ since
π(u,w)(F(w))∩π(u,v)(F(v)) 6= ∅, The probability that the edge is satisfied by the randomized

labeling is at least
(
τ ′

k

)2
. Thus in expectation, at least

(
τ ′

k

)2
fraction of edges between X∗

and Γ(X∗)∩ Γ(Y ∗) are satisfied. By Lemma 15, at least 1
2 fraction of edges connected to X∗

are in between X∗ and Γ(X∗) ∩ Γ(Y ∗). Finally using bi-regularity, this labeling satisfies at
least 1

2
ε
2

(
τ ′

k

)2
fraction of edges in G. Setting γ < 1

2
ε
2

(
τ ′

k

)2
completes the proof. J

Proof of Theorem 1

The proof follows from Lemma 13, Lemma 14 and Conjecture 12.
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Proof of Theorem 2

Given an input as a bipartite graph, there is a trivial 3/2 approximation for Bi-Covering -
Take set A to be the union of a smaller part and half of the larger bi partition and B to be
union of smaller part and remaining half of the larger part. It is easy to see these two sets A
and B satisfy the property of being a Bi-Covering. As max{|A|, |B|} ≤ 3

4 |V |, this is a
3
2

approximation as OPT is at least |V |2 .
The 3

2 + ε inapproximability follows easily from the above (2 − ε) inapproximability
for the general case. The reduction is as follows: Let G(V,E) be the given instance of a
Bi-Covering. Construct a natural bipartite graph G′ between V × V where (i, j) forms
an edge if (i, j) ∈ E (or (j, i) ∈ E). Fix a small enough constant ε > 0. It is easy to see
that if G has a solution of fractional size 1/2 + ε then so does G′. Next, if there are sets A′
and B′ where 1

2|V | max{|A′|, |B′|} ≤ 3
4 − ε which satisfy the Bi-Covering property, we have

1
2|V | |A

′ \ B′| = 1
2|V | (2|V | − |B

′|) ≥ 1 − ( 3
4 − ε) = 1

4 + ε and similarly 1
2|V | |B

′ \ A′| ≥ 1
4 + ε.

Note that A′ \B′ and B′ \A′ are two disjoint sets whose size of union is at least (1 + 2ε)|V |.
Thus, we can find two sets, say X ′ and Y ′ ( namely X ′ is intersection of A′ \ B′ with left
part of the bipartite graph and Y ′ is the intersection of B′ \ A′ with right part) of size at
least ε|V | each, where X ′ is from left side and Y ′ is from right side with no edges in between.
We now think of X ′ and Y ′ as a subset of V . Let Z = X ′ ∩ Y ′. Partition Z into Z1 and Z2
of equal sizes. Take X = Z1 ∪ (X ′ \ Y ′) and Y = Z2 ∪ (Y ′ \X ′). It is now easy to verify
that there are no edges in between X and Y in G and 1

|V | min{|X|, |Y |} ≥ ε
2 . Hence, if we

can find a solution of fractional cost 3
4 − ε in G

′ in polynomial time then we can also find a
solution of fractional cost 1− ε

2 in G in polynomial time and this gives a polynomial time
algorithm with approximation factor 2− ε

2 for small enough constant ε > 0. As Bi-Covering
is UG hard to approximate within (2− ε) for all ε > 0 for general graph, this gives a 3

2 + ε

hardness for Bi-Covering in bipartite graph.

Proof of Corollary 3

We prove it by giving reduction from Bi-Covering. Let G(V,E) be the given instance of
Bi-Covering. Construct a bipartite graph H between V × V where (i, j) forms an edge if
(i, j) /∈ E. Fix a small enough constant ε > 0. In one direction, if G has a Bi-Covering of
fractional size at most (1/2+ ε) then H ′ contains a (1/2− ε)|V |× (1/2− ε)|V | bipartite clique.
In other direction, if H ′ has a bipartite clique of size 2ε|V | × 2ε|V | then let X ′ and Y ′ be the
subset of vertices from left and right side of bipartite clique. As before, let Z = X ′ ∩ Y ′ and
Z1 and Z2 be the partition of Z of equal size. Let X = (X ′ \Y ′)∪Z1 and Y = (Y ′ \X ′)∪Z2.
It follows that |X|, |Y | is at least ε|V | and are disjoint viewed as a subset of V . Also, there
are no edges between X and Y . Therefore, V \X and V \ Y each of size at most (1− ε)|V |
gives a Bi-Covering of G. Thus, Theorem 1 implies that it is hard to distinguish between
Bi−Clique of size (1/2− ε)|V | and ε|V | which completes the proof of corollary.
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