
http://wrap.warwick.ac.uk

Original citation:
Chitnis, Rajesh, Cormode, Graham, Esfandiari, Hossein, Hajiaghayi, MohammadTaghi
and Monemizadeh, Morteza (2015) New streaming algorithms for parameterized
maximal matching & beyond. In: 27th ACM symposium on Parallelism in Algorithms and
Architectures, Portland, Oregon, USA, 13-15 Jun 2015. Published in: Proceedings of the
27th ACM symposium on Parallelism in Algorithms and Architectures pp. 56-58.

Permanent WRAP url:
http://wrap.warwick.ac.uk/74442

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

Publisher’s statement:
"© ACM,2015. This is the author's version of the work. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definitive version was published in
Proceedings of the 27th ACM symposium on Parallelism in Algorithms and Architectures
pp. 56-58. (2015) http://dx.doi.org/10.1145/2755573.2755618"

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/42614882?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/74442
http://dx.doi.org/10.1145/2755573.2755618
mailto:publications@warwick.ac.uk

Brief Announcement: New Streaming Algorithms for
Parameterized Maximal Matching & Beyond ∗

Rajesh Chitnis
Dept. of Computer Science &

Applied Mathematics
Weizmann Institute of

Science, Israel
rajesh.chitnis@weizmann.ac.il

Graham Cormode
Dept. of Computer Science.
University of Warwick, UK

g.cormode@warwick.ac.uk

Hossein Esfandiari
Dept. of Computer Science

University of Maryland,
College Park, USA

hossein@cs.umd.edu

MohammadTaghi
Hajiaghayi

Dept. of Computer Science
University of Maryland,

College Park, USA
hajiagha@cs.umd.edu

Morteza Monemizadeh
Dept. of Computer Science.
Charles University, Prague,
Frankfurt, Czech Republic

monemi@iuuk.mff.cuni.cz

ABSTRACT
Very recently at SODA’15 [2], we studied maximal match-
ing via the framework of parameterized streaming, where we
sought solutions under the promise that no maximal match-
ing exceeds k in size. In this paper, we revisit this problem
and provide a much simpler algorithm for this problem. We
are also able to apply the same technique to the Point Line
Cover problem [3].

1. INTRODUCTION
The streaming model for processing graphs is an attrac-

tive one: we keep a compact data structure that summa-
rizes all data seen to date, and incrementally update it as
new edges are observed. However, for many problems it is
known that any such data structure must be large, in the
worst case proportional to the total size of the graph. An
ongoing line of research asks what can be computed using
resources much less than simply storing the data in full. In
our recent work [2], we studied graph streaming problems in
the parameterized setting: we seek solutions provided that

∗R.C. was supported by a postdoctoral fellowship from I-
CORE ALGO. G.C. was supported by the Yahoo Fac-
ulty Research and Engagement Program and a Royal So-
ciety Wolfson Research Merit Award. H.E. and M.H.
were supported in part by NSF CAREER award 1053605,
NSF Grant CCF-1161626, ONR YIP award N000141110662,
DARPA/AFOSR grant FA9550-12-1-0423, and a Google
Faculty Research award. M.M. was supported by the project
14-10003S of GA ČR. Part of this work was done when
M.M>. was at Goethe-Universität Frankfurt, Germany and
supported in part by MO 2200/1-1

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
SPAA’15, June 13–15, 2015, Portland, OR, USA.
ACM 978-1-4503-3588-1/15/06.
http://dx.doi.org/10.1145/2755573.2755618.

the size of the solution is bounded by a parameter k. Of
particular interest is finding a matching in a graph, a fun-
damental question in graph algorithms. Under the promise
that no maximal matching exceeds k in size, we gave an intri-
cate algorithm to process a dynamic stream (one with both
edge insertions and deletions) that required O(k2 polylog n)
space, and showed that any algorithm for this problem needs
Ω(k2) space.

In this paper, we revisit this problem and provide a much
simpler algorithm for this problem, which meets the same
bounds. We further apply the same technique to the Point
Line Cover problem [3] where we are given n points on the
plane and a parameter k, and the goal is to see if we can
cover all points using k lines. Our belief is that the insights
gained from this algorithm could apply to other problems in
this area, and that the reduced complexity of the description
also makes the algorithm easier to understand and apply.

2. MAXIMAL MATCHING

Definition 1. (k-sparse recovery algorithm) A k-sparse
recovery algorithm is a data structure which accepts inser-
tions and deletions of elements so that, if the current number
of elements stored in it is at most k, then these can be re-
covered in full.

Such algorithms have been designed to operate determin-
istically, and require O(k polylogn) space [1].

Definition 2. (k-sample algorithm) A k-sample algorithm
is a data structure which accepts insertions and deletions of
elements so that at any moment it can provide a sample of
size k from the elements stored in it, provided there are at
least k such elements.

Randomized constructions of k-sample algorithms are known
(which use k-sparse recovery algorithms within them), and
require O(k polylog n) space [1].

Assumption 3. (promise) We assume that, at every point
during the execution of the algorithm, the maximal matching
of the graph has size at most k.

Our algorithm for finding a maximal matching works as
follows. It keeps information about edges in two forms. A
data structure L keeps a set of edges exactly. We also main-
tain up to 2k + 1 data structures Si (1 ≤ i ≤ 2k + 1) which
are capable of sampling up to 2k + 1 edges from a set (i.e.
instances of (2k + 1)-sample recovery algorithms). Each Si

is associated with a timestamp ti (index of an update in the
stream), which represents when the structure was created.

We partition the nodes into two classes: low-degree, mean-
ing that they have at most 2k incident edges, and high-
degree, meaning that they have more than 2k incident edges.
We maintain a (sub)set H of high degree nodes, correspond-
ing to the set of nodes which are represented with the sketches
Si. Initially, L and H are empty, the Si are empty, and all
nodes are considered low-degree.

Edge Insertion: For each edge that is inserted, we ensure
that it is reflected in one of the data structures. If the edge
is incident on two nodes in H, then we store the edge in
the sketch Si associated with the oldest summary, i.e. the
one with the oldest timestamp. If the edge is incident on
one node v 6∈ H, and another w ∈ H, then we store it in the
sketch associated with w. If the edge is incident on two nodes
neither of which is in H, then we store the edge explicitly
in L. If this insertion causes one of the low degree nodes
v to have more than 2k edges in L incident on it, then we
create a sketch for v, and assign it the current timestamp.
We extract all edges in L that are incident on v, and insert
them into the sketch of v. We update H to include v.

Edge Deletion: For each edge that is deleted, we identify
where it is represented in the data structures, and remove it.
If the edge is present in L, then we remove it. Else, at least
one of its endpoints must have a sketch. If only one has a
sketch, then we remove the edge from this sketch. Else, we
remove the edge from the sketch with the oldest timestamp.
If removing an edge from a sketch causes the node, v to
become low degree, then we interrogate the sketch to find
all the edges incident on v. For each extracted edge, if it is
also incident on a high degree node w, then it is placed in
the sketch for w, else it is placed in L. The sketch can then
be removed, and further v is removed from H.

Invariants: The update procedures above ensure that a
number of invariants hold over the course of the stream.

1. (Unique representation) Each edge is represented in
exactly one place within the data structures L, Si.

2. (Old sketch) If an edge is incident on two sketches,
then it is always represented in the older of these two.

These invariants can be checked easily. The property of
unique representation follows from the description of the in-
sertion and deletion procedures: when a new edge is in-
serted, it is stored in only one data structure; when an edge
is deleted, it is removed. The operations which move edges
from L into sketches, from one sketch into another sketch,
or from a sketch into L also preserve this property.

The property of an edge being associated with the older
of its two sketched nodes similarly follows by consideration
of the update operations. The only cases which require
some care are when an edge is currently associated with two
sketched nodes, and the older of these sketches is removed.
The deletion process makes it clear that this edge is then
moved to the sketch of the other node.

Note that the algorithm does not explicitly maintain the
degree of nodes that are not high degree, only those in H.

It is consequently possible that a node may reach a degree
of greater than k and remain outside of H (for example, if
several of its edges are incident on nodes that are in H).
That is, every node in H is a high degree node, but not
every high degree node necessarily has a sketch and is in H.
This does not affect the correctness of the algorithm.

We now make some observations about the algorithm.

Lemma 4. Under Assumption 3, we have

• The number of high degree nodes is at most 2k + 1

• The number of edges in L is bounded by 4k2.

Proof. We prove the two statements in the lemma as
follows:

• If there are more than 2k + 1 high degree nodes, then
there must be a matching of size more than k. Such a
matching can be found by picking a high degree node
and an arbitrary neighbor. This still leaves at least
2k − 1 nodes whose degree is at least 2k − 1, and so
the procedure can be iterated. This will result in a
matching of size k + 1.

• This follows similarly, since we could otherwise greed-
ily find a large matching within L. Each matched edge
removes at most 4k other edges from L that are inci-
dent on the matched nodes, since we ensure that all
nodes in L have at most 2k edges from L incident on
them from. If we match 2k nodes, then we remove
at most 4k2 edges; hence if there are more than 4k2

edges in L, then these can participate in the matching,
violating the promise.

From Lemma 4 we can conclude the following theorem

Theorem 5. The space cost of this algorithm is Õ(k2).

Proof. From Assumption 3, we have that |L| is O(k2),
and the number of sketches stored is always O(k), the size
of which is bounded by O(k polylogn) (see Definitions 1 and
2). Hence, the total space cost is O(k2 polylog n).

Algorithm to find a matching: Given these data struc-
tures, the algorithm to find a matching is straightforward:
it recovers a graph G′ which is a subgraph of the graph G
described by the stream. We then find a maximal matching
on G′, and argue that this is also maximal for G.

Graph G′ is formed by extracting as many edges from the
data structures as possible. That is, for each sketch Si we
extract up to (2k + 1) edges incident on the corresponding
node, and set G′ to be the union of all these edges plus those
stored in L. We now argue that this information is sufficient
to find a maximal matching for G.

Theorem 6. The above procedure indeed finds a maximal
matching for G

Proof. The proof hinges on the fact that high degree
nodes have sufficiently high degree that it does not matter
which edges we remember for them beyond a point. Specifi-
cally, suppose we have found a maximal matching of size at
most k on G′. Assume that there is a node in H (of degree
more than 2k) that is unmatched. At most 2k of its neigh-
bors are matched, due to the promise that the matching is

size at most k. Then, it must have an unmatched neigh-
bor which was can find from the (k sample recovery) sketch,
since the sketch recovers up to 2k+ 1 neighbors of the node.
This contradicts the claim that the matching was maximal.

Then, all nodes in H are matched. Thus, any edge which is
incident on a node in H cannot extend the matching. L con-
sists of the set of all remaining edges, hence this represents
sufficient information to ensure that the whole matching is
maximal. Consequently, the matching we find on G′ is also
maximal on G.

Note: Note that the operation of the algorithm as up-
dates are processed depends only on deterministic algorithms
(such as the k-sparse recovery algorithms - see Definition 1).
The only time a randomized data structure is made use of
is in the algorithm to find a matching, where we probe the
k-sample algorithms. This greatly simplifies the analysis as
compared to that in [2]

3. POINT LINE COVER
In the Point Line Cover problem, we are given a set P of

n points and the question is to find minimum number of lines
which can cover all the given n points. In the parametereized
version of the problem, we are given an integer k and the
question is whether there exists a set of k lines which can
cover all the n points. There is an (known) easy kernel of
size O(k2) (see next paragraph), which was shown to be
essentially tight by Kratsch et al. [3]

O(k2) kernel for Point Line Cover: We perform the
following procedure iteratively:

• Step 1: Check if there exists a line ` which contains
at least k + 1 points

• Step 2: If YES then include this line in the solution,
delete all the points which lie on this line and decrease
k by 1. If k > 0, then go to Step 1. If k = 0 and there
are still some points remaining then the given instance
is a NO instance.

• Step 3: Otherwise if n > k2 then the given instance
is a NO instance.

We can check if a given line contains at least k+1 points in
time O(n): for each of the n points we just check individually
if they lie on the line or not. There are

(
n
2

)
= O(n2) lines:

one determined by each pair of points. So each execution of
Step 1 takes O(n3) time. Since we execute Step 1 at most
k times (note the parameter decreases each time we get a
YES answer for Step 1, which is the only time we run Step
1 again). Hence the total running time is O(n3 · k).

Now we show correctness of the kernelization algorithm.
If there is a line which contains at least k+1 points, then we
must include it in our solution; since otherwise we will need
at lest k+ 1 different lines to cover each of these points. We
continue this process until Step 1 answers NO or k becomes
0. If k = 0 and we have any points remaining to cover then
the instance is obviously a NO instance. Otherwise if Step 1
answers NO, then this means that any line can cover at most
k points. Hence an instance which can be covered with at
most k lines can have at most k2 points. This justifies Step
3, and shows the correctness of the kernelization algorithm.

Algorithm for Point Line Cover under Promise:
We now show how to obtain an Õ(k2) algorithm for finding
minimum Point Line Cover under the following promise:

Assumption 7. (promise) We assume that, at every point
during the execution of the algorithm, the number of lines
needed to cover all the points is at most k.

Given a stream of insertions and deletions of points, we
maintain a kernel as follows. Let L be a set of lines such
that any line in L contains at most k points. We denote
set of lines containing more than k points each by H. For a
line in L we just keep all the points which lie on it, and for
each line in H we sample k + 1 points using a (k + 1)-sparse
recovery algorithm. The maintenance of sets L and H, and
commuting of lines in sets S and H upon point insertions
and deletions is similar to the algorithm in Section 2.

4. REFERENCES
[1] N. Barkay, E. Porat, and B. Shalem. Efficient sampling

of non-strict turnstile data streams. In FCT 2013,
pages 48–59.

[2] R. H. Chitnis, G. Cormode, M. T. Hajiaghayi, and
M. Monemizadeh. Parameterized streaming: Maximal
matching and vertex cover. In SODA 2015, pages
1234–1251.

[3] S. Kratsch, G. Philip, and S. Ray. Point line cover: The
easy kernel is essentially tight. In SODA 2014, pages
1596–1606.

