124 research outputs found

    Three-Leaf Dart-Shaped Single-Crystal BN Formation Promoted by Surface Oxygen

    Get PDF
    Two-dimensional hexagonal boron nitride (h-BN) single crystals with various shapes have been synthesized by chemical vapor deposition over the past several years. Here we report the formation of three-leaf dart (3LD)-shaped single crystals of h-BN on Cu foil by atmospheric-pressure chemical vapor deposition. The leaves of the 3LD-shaped h-BN are as long as 18 {\mu}m and their edges are smooth armchair on one side and stepped armchair on the other. Careful analysis revealed that surface oxygen plays an important role in the formation of the 3LD shape. Oxygen suppressed h-BN nucleation by passivating Cu surface active sites and lowered the edge attachment energy, which caused the growth kinetics to change to a diffusion-controlled mode.Comment: 7 pages,6 figure

    Fluid Data Compression and ROI Detection Using Run Length Method

    Get PDF
    AbstractIt is difficult to carry out visualization of the large-scale time-varying data directly, even with the supercomputers. Data compression and ROI (Region of Interest) detection are often used to improve efficiency of the visualization of numerical data. It is well known that the Run Length encoding is a good technique to compress the data where the same sequence appeared repeatedly, such as an image with little change, or a set of smooth fluid data. Another advantage of Run Length encoding is that it can be applied to every dimension of data separately. Therefore, the Run Length method can be implemented easily as a parallel processing algorithm. We proposed two different Run Length based methods. When using the Run Length method to compress a data set, its size may increase after the compression if the data does not contain many repeated parts. We only apply the compression for the case that the data can be compressed effectively. By checking the compression ratio, we can detect ROI. The effectiveness and efficiency of the proposed methods are demonstrated through comparing with several existing compression methods using different sets of fluid data

    Progress towards quantum simulating the classical O(2) model

    Full text link
    We connect explicitly the classical O(2)O(2) model in 1+1 dimensions, a model sharing important features with U(1)U(1) lattice gauge theory, to physical models potentially implementable on optical lattices and evolving at physical time. Using the tensor renormalization group formulation, we take the time continuum limit and check that finite dimensional projections used in recent proposals for quantum simulators provide controllable approximations of the original model. We propose two-species Bose-Hubbard models corresponding to these finite dimensional projections at strong coupling and discuss their possible implementations on optical lattices using a 87^{87}Rb and 41^{41}K Bose-Bose mixture.Comment: 7 pages, 6 figures, uses revtex, new material and one author added, as to appear in Phys. Rev.

    Study on Construction Resource Optimization and Uncertain Risk of Urban Sewage Pipe Network

    Get PDF
    With considering sewage pipe network upgrading projects in the “villages” in cities, the optimization of construction resources and the assessment of delay risks could be achieved. Based on the schedule-cost hypothetical theory, the mathematical model with constraint indicators was established to obtain the expression of optimal resource input, and conclude the method to analyze the schedule uncertainties. The analysis showed that cyclical footage of pipe could be regarded as a relatively fixed value, and the cost can be regarded as a function that depending on the number of working teams. The optimal number of teams and the optimal schedule occurred when the minimum total cost achieved. In the case of insufficient meteorological data, the Monte Carlo simulation method and uncertainty analysis method can be applied to assess the impact of rainfall on the total construction period, correspondingly the probability of such risk could be derived. The calculation showed that the risk of overdue completion varied significantly according to the construction starting time. It was necessary to take rainfall risk into consideration and make corresponding strategies and measures

    Enhanced and shortened Mn 2+ emissions by Cu + co-doping in borosilicate glasses for W-LEDs

    Get PDF
    A novel pair of transition metal ions Cu+, Mn2+ is co-doped in borosilicate glasses. Both copper and manganese ions exist in lower valence states (Cu+, Mn2+) in the as-prepared glasses. Around 5-time enhanced Mn2+ emission under the UV excitation is observed, which, as demonstrated by excitation spectra and emission decay curves, is due to an energy transfer from Cu+ ions resulting in greatly increased absorption of Mn2+ ions in the UV region, and relaxation on doubly-forbidden transition of Mn2+ leading to the much shortened Mn2+ emission lifetime from millisecond to microsecond level. Besides, a composite white emission is generated by combining the blue-green part from Cu+ ions with the green-red part from Mn2+ ions and it can be effectively tuned from cold to warm by adjusting host glass composition and altering excitation wavelength. Relevant mechanisms are discussed

    Robotic Cane as a Soft SuperLimb for Elderly Sit-to-Stand Assistance

    Full text link
    Many researchers have identified robotics as a potential solution to the aging population faced by many developed and developing countries. If so, how should we address the cognitive acceptance and ambient control of elderly assistive robots through design? In this paper, we proposed an explorative design of an ambient SuperLimb (Supernumerary Robotic Limb) system that involves a pneumatically-driven robotic cane for at-home motion assistance, an inflatable vest for compliant human-robot interaction, and a depth sensor for ambient intention detection. The proposed system aims at providing active assistance during the sit-to-stand transition for at-home usage by the elderly at the bedside, in the chair, and on the toilet. We proposed a modified biomechanical model with a linear cane robot for closed-loop control implementation. We validated the design feasibility of the proposed ambient SuperLimb system including the biomechanical model, our result showed the advantages in reducing lower limb efforts and elderly fall risks, yet the detection accuracy using depth sensing and adjustments on the model still require further research in the future. Nevertheless, we summarized empirical guidelines to support the ambient design of elderly-assistive SuperLimb systems for lower limb functional augmentation.Comment: 8 pages, 9 figures, accepted for IEEE RoboSoft 202

    Quantitative proteomics identification of phosphoglycerate mutase 1 as a novel therapeutic target in hepatocellular carcinoma

    Get PDF
    BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide with poor prognosis due to resistance to conventional chemotherapy and limited efficacy of radiotherapy. There is an urgent need to develop novel biomarkers for early diagnosis, as well as to identify new drug targets for therapeutic interventions. PATIENTS AND METHODS: 54 paired HCC samples and 21 normal liver tissues were obtained from West China Hospital of Sichuan University. Informed consent was obtained from all the patients or their relatives prior to analysis, and the project was approved by the Institutional Ethics Committee of Sichuan University. Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC)-based proteomics was employed to profile the differentially expressed proteins between a HepG2 human hepatoma cell line and an immortal hepatic cell line L02. Validation of PGAM1 expression was performed by semi-quantitative RT-PCR, immunoblot and immunohistochemistry using clinical samples. shRNA expressing plasmids specifically targeting PGAM1 were designed and constructed by GenePharma Corporation (Shanghai, China), and were utilized to silence expression of PGAM1 in vitro and in vivo. Cell proliferation was measured by a combination of colony formation assay and Ki67 staining. Apoptosis was examined by flow cytometry and TUNEL assay. RESULTS: A total of 63 dysregulated proteins were identified, including 51 up-regulated proteins, and 12 down-regulated proteins (over 2-fold, p < 0.01). Phosphoglycerate mutase 1 (PGAM1) was found markedly upregulated. Clinico-pathological analysis indicated that overexpression of PGAM1 was associated with 66.7% HCC, and strongly correlated with poor differentiation and decreased survival rates (p < 0.01). shRNAs-mediated repression of PGAM1 expression resulted in significant inhibition in liver cancer cell growth both in vitro and in vivo. CONCLUSION: Our studies suggested that PGAM1 plays an important role in hepatocarcinogenesis, and should be a potential diagnostic biomarker, as well as an attractive therapeutic target for hepatocellular carcinoma
    corecore