528 research outputs found

    Towards Deadline Guaranteed Cloud Storage Services

    Get PDF
    More and more organizations move their data and workload to commercial cloud storage systems. However, the multiplexing and sharing of the resources in a cloud storage system present unpredictable data access latency to tenants, which may make online data-intensive applications unable to satisfy their deadline requirements. Thus, it is important for cloud storage systems to provide deadline guaranteed services. In this paper, to meet a current form of service level objective (SLO) that constrains the percentage of each tenant\u27s data access requests failing to meet its required deadline below a given threshold, we build a mathematical model to derive the upper bound of acceptable request arrival rate on each server. We then propose a Deadline Guaranteed storage service (called DGCloud) that incorporates three algorithms. Its deadline-aware load balancing scheme redirects requests and creates replicas to release the excess load of each server beyond the derived upper bound. Its workload consolidation algorithm tries to maximally reduce servers while still satisfying the SLO to maximize the resource utilization. Its data placement optimization algorithm re-schedules the data placement to minimize the transmission cost of data replication. Our trace-driven experiments in simulation and Amazon EC2 show the higher performance of DGCloud compared with previous methods in terms of deadline guarantees and system resource utilization, and the effectiveness of its individual algorithms

    (Z)-N-{(E)-10-[(2,6-Diisopropyl­phen­yl)­imino]-9,10-dihydro­phenanthren-9-yl­idene}-2,6-dimethyl­aniline

    Get PDF
    The title compound, C34H34N2, adopts a Z,E configuration with respect to the N=C—C=N backbone, with an N—C—C—N torsion angle of 41.1 (4)° The dihedral angle between the benzene rings in the 9,10-dihydro­phenanthrene moiety is 18.0 (1)°

    Biocompatibility of Poly-ε-caprolactone-hydroxyapatite composite on mouse bone marrow-derived osteoblasts and endothelial cells

    Get PDF
    Open Access. Click on the DOI link to access this article at the publisher's website, or download /view it on SOAR.Background. Tissue-engineered bone may be developed by seeding the cells capable of both osteogenesis and vascularization on biocompatible composite scaffolds. The current study investigated the performance of mice bone marrow-derived osteogenic cells and endothelial cells as seeded on hydroxyapatite (HA) and poly-ε-caprolactone (PCL) composite scaffolds. Methods Mononuclear cells were induced to osteoblasts and endothelial cells respectively, which were defined by the expression of osteocalcin, alkaline phosphatase (ALP), and deposits of calcium-containing crystal for osteoblasts, or by the expression of vascular endothelial growth factor receptor-2 (VEGFR-2) and von Willebrand factor (vWF), and the formation of a capillary network in Matrigel™ for endothelial cells. Both types of cell were seeded respectively on PCL-HA scaffolds at HA to PCL weight ratio of 1:1, 1:4, or 0:1 and were evaluated using scanning electron microscopy, ALP activity (of osteoblasts) and nitric oxide production (of endothelial cells) plus the assessment of cell viability. Results The results indicated that HA led to a positive stimulation of osteoblasts viability and ALP activity, while HA showed less influence on endothelial cells viability. An elevated nitric oxide production of endothelial cells was observed in HA-containing group. Conclusion Supplement of HA into PCL improved biocompatible for bone marrow-derived osteoblasts and endothelial cells. The PCL-HA composite integrating with two types of cells may provide a useful system for tissue-engineered bone grafts with vascularization.Peer reviewe

    Development and Validation of a Predictive Model for the Prognosis of Complications of Supracondylar Fractures of The Humerus in Children

    Get PDF
    Objective: Informing patient consultations and healthcare choices, clinical predictive models can offer patients tailored projections of the outcome. The most frequent elbow fractures in children are supracondylar humerus fractures, and clinical prediction models were still largely underutilized in these cases. By developing and verifying a prediction model to lower the risk of postoperative problems in children with supracondylar humerus fractures, this research sought to evaluate independent risk variables connected with the incidence of complications of supracondylar humerus fractures in children. Methods: We retrospectively studied 411 children with supracondylar humerus fractures treated surgically at our hospital from 2015 to 2019, and explored the independent risk factors affecting the prognosis of supracondylar humerus fractures in children in the study group using univariate and multifactorial Cox regression analysis, respectively. In addition, a prediction model based on the independent factors was constructed, a nomogram was made and data from the two cohorts were used to verify the feasibility and reliability of the model and visualize the data. Results: Height, older than eight years, weight, nerve damage, fracture type and with joystick technology of the child as independent risk factors influenced the prognosis of pediatric supracondylar humerus fractures in the modeling constructed by the training cohort, respectively. The results of the validation cohort were further screened for older than eight years, nerve injury and fracture type as independent prognostic factors. Conclusions: We were able to construct a predictive model based on a large genuine data sample, and clinical characteristics in this model could be used as independent predictors for reducing the occurrence of postoperative complications in supracondylar fractures. Combining basic vital signs and clinical risk factors into a simple and clear nomogram was more likely to result in the best treatment plan

    High VEGF with Rapid Growth and Early Metastasis in a Mouse Osteosarcoma Model

    Get PDF
    A murine model of osteosarcoma was developed to investigate the association between the expression of VEGF and the progression of osteosarcoma. Two human osteosarcoma cell lines with distinct VEGF expressions were introduced into proximal tibiae of immuno-deficient SCID mice, either by direct injection through the cortical bone or surgical exposing and drilling on the tibial metaphysis to seed tumor cells. Bone tumors were obvious on microCT within 4 weeks following osteosarcoma cell inoculation through surgical delivery. In contrast, direct injection without drilling often resulted in periosteal tumors. Although neoplasms were developed regardless of VEGF levels, orthotopic tumors derived from high VEGF-expressing cells were detected 2 weeks earlier on CT images than the ones from VEGF negative cells. At sacrifice, high VEGF tumors were distinctively larger in size and more frequently invaded the adjacent bone tissue. Multiple metastatic lesions were found in all the lung tissues at 8 weeks from high VEGF group, whereas only 1 of 7 VEGF negative tumors exhibited pulmonary metastasis. Overall, this model developed with the surgical tumor cell delivery results in histological and radiographic features more consistent with primary osteosarcoma. Interestingly, VEGF expression correlates with the early establishment, rapid tumor growth, and the development of pulmonary metastasis

    Subcellular localization and function study of a secreted phospholipase C from Nocardia seriolae

    Get PDF
    Fish nocardiosis is a chronic systemic granulomatous disease, andNocardia seriolaeis the main pathogen that causes this disease. But the pathogenesis and virulence factors ofN. seriolaeare not fully understood. A phospholipase C (PLC), which was likely to be a secreted protein targeting host cell mitochondria, was found by the bioinformatics analysis on the whole genome sequence ofN. seriolae. In order to determine the subcellular localization and study the preliminary function of PLC fromN. seriolae(NsPLC), the gene cloning, secreted protein identification, subcellular localization in host cells and apoptosis detection of NsPLC were carried out in this study. The results showed that NsPLC was a secreted protein by mass spectrometry analysis of extracellular products fromN. seriolae. Subcellular localization of NsPLC-GFP fusion protein in FHM cells revealed that the green fluorescence exhibited a punctate distribution near the nucleus and did not co-localize with mitochondria. In addition, apoptosis assay suggested that apoptosis was induced in FHM cells by the overexpression of NsPLC. This study may lay the foundation for further study on the function of NsPLC and promote the understanding of the virulence factors and pathogenic mechanism ofN. seriolae

    Sequence Analysis of Alginate-Derived Oligosaccharides by Negative-Ion Electrospray Tandem Mass Spectrometry

    Get PDF
    Negative-ion electrospray tandem mass spectrometry (ES-MS/MS) with collision-induced dissociation (CID) is attempted for sequence determination of alginate oligosaccharides, derived from polyanionic alginic acid, polymannuronate, and polyguluronate by partial depolymerization using either alginate lyase or mild acid hydrolysis. Sixteen homo- and hetero-oligomeric fragments were obtained after fractionation by gel-filtration and strong anion exchange high performance liquid chromatography. The product-ion spectra of these alginate oligosaccharides were dominated by intense B-, C-, Y-, and Z-type ions together with 0,2A- and 2,5A-ions of lower intensities. Internal mannuronate residues (M) produce weak but specific decarboxylated Zint-ions (Zint − 44 Da; int: denotes internal), which can be used for distinction of M and a guluronate residue (G) at an internal position. A reducing terminal M or G, although neither gives rise to a specific ion, can be identified by differences in the intensity ratio of fragment ions of the reducing terminal residue [2,5Ared]/[0,4Ared] (red: denotes reducing terminal)

    Electronic conduction in a three-terminal molecular transistor

    Full text link
    The electronic conduction of a novel, three-terminal molecular architecture, analogous to a heterojunction bipolar transistor is studied. In this architecture, two diode arms consisting of donor-acceptor molecular wires fuse through a ring, while a gate modulating wire is a \pi-conjugated wire. The calculated results show the enhancement or depletion mode of a transistor by applying a gate field along the positive or negative direction. A small gate field is required to switch on the current in the proposed architecture. The changes in the electronic conduction can be attributed to the intrinsic dipolar molecular architecture in terms of the evolution of molecular wavefunctions, specifically the one associated with the terphenyl group of the modulating wire in the presence of the gate field.Comment: 13 pages, 5 figure
    corecore