245 research outputs found

    The Contagion Effect of Compensation Regulation: Evidence From China

    Get PDF
    To shed light on whether and how firms changed compensation practices in response to a shift in the environment in which they operated, we examine whether there is contagion effect of executive compensation regulation on state-owned enterprises (SOEs) in the emerging market of China. Specifically, we investigate whether firms not directly affected by the changing regulatory environment nonetheless changed executive compensation in response to the actions of the directly affected firms, which is called contagion effect. We further examine the specific contagion mechanisms and the economic consequences of regulation on compensation. We find that the regulation has a significant effect on compensation gap in central SOEs and a contagion effect on local SOEs but not for non-SOEs. Within SOEs, there is an intra-industry contagion effect of compensation regulation but not an intra-region effect. Further, central SOEs and local SOEs experience reduced firm performance after the compensation regulations, but not the non-SOEs; indicating that the compensation regulation does not have favorable economic consequences for both the directly affected central SOEs and the indirectly affected local SOEs

    Effects of Inoculants (Chlorobium limicola and Rhodopseudo-monas palustris) on Nutrient Uptake and Growth in Cucumber

    Get PDF
    Rhizobacteria is a prosperous for promoting plant growth for the superiority of reducing environmental damages. Two Strains of Chlorobium limicola and Rhodopseudomonas palustris were supplied in the experiment as potential inoculants for cucumber. Significant enhancement of the availability of macronutrient elements N, P and K were observed in soil, and further improvement on the uptake of them was also obtained in cucumber plants. Accumulation of essential micronutrients of Fe and Zn were detected both in roots and in shoots. The two stains increased chlorophyll and carotinoid synthesis, plant height, stem diameter, wet weight and dry weight. Various dose has significantly effect on plant growth stimulation, C. Limicola with 107 cells mL-1 and R. Palustris with 108 cells mL-1 seem to be better on the whole

    Gastric Adenocarcinoma Predictive Long Intergenic Non-Coding RNA Promotes Tumor Occurrence and Progression in Non-Small Cell Lung Cancer via Regulation of the miR-661/eEF2K Signaling Pathway

    Get PDF
    Background/Aims: Long non-coding RNAs (lncRNAs) play vital roles in carcinogenesis as oncogenes or tumor suppressor genes. This study explored the biological function of lncRNA gastric adenocarcinoma predictive long intergenic non-coding RNA (GAPLINC) in human non-small cell lung cancer (NSCLC). Methods: GAPLINC expression in NSCLC specimens and cell lines was detected by qRT-PCR and Western blot. The effect of GAPLINC on cell proliferation was investigated using CCK8-assay, colony formation assay, and xenograft model. The effects of GAPLINC on apoptosis and cell cycle were determined using flow cytometry. The mechanism of GAPLINC involved in NSCLC was explored using Western blot, luciferase reporter assay, and RNA fluorescence in situ hybridization. Results: We found that GAPLINC expression was up-regulated in NSCLC tissues and cell lines. Overexpression of GAPLINC was associated with poor prognosis in patients with NSCLC. Silencing of GAPLINC significantly inhibited cell proliferation, promoted apoptosis, and induced cell cycle arrest in the G0/G1 phase. Results from xenograft transplantation showed that GAPLINC silencing inhibited the tumor growth in vivo. Interestingly, GAPLINC silencing decreased the expression of eukaryotic elongation factor-2 kinase (eEF2K) protein both in vivo and in vitro. Bioinformatic analysis and luciferase reporter confirmed that miR-661 targeted GAPLINC and eEF2K 3’-UTR and was negatively correlated with the expression of GAPLINC and eEF2K. Conclusion: Our findings indicate that GAPLINC promotes NSCLC tumorigenesis by regulating miR-661/eEF2K cascade and provide new insights for the pathogenesis underlying NSCLC and potential targets for therapeutic strategy

    Impact of thermal processing on dietary flavonoids

    Get PDF
    Financiado para publicaciĂłn en acceso aberto: Universidade de Vigo/CISUGFlavonoids are widely distributed in natural products and foods as a class of polyphenols. They processed diverse bioactivities, including anti-inflammation activity, antiaging activity, and antioxidant activity. The foods rich in flavonoids are usually consumed after thermal processing. However, flavonoids are commonly vulnerable under thermal processing, and it could cause various influences on their stability and bioactivities. Therefore, in this review, the effects of thermal processing on thermal stability and bioactivities of dietary flavonoids from different food sources were first summarized. The strategies to improve thermal stability of dietary flavonoids were then discussed. Noticeably, the effect of some of the promising thermal technologies on dietary flavonoids was also clarified preliminarily in the current review. The promising thermal technologies may be an alternative to conventional thermal processing technologies.Agencia Estatal de InvestigaciĂłn | Ref. RYC2020-030365-

    Atomistic Conversion Reaction Mechanism of WO3 in Secondary Ion Batteries of Li, Na, and Ca

    Full text link
    Intercalation and conversion are two fundamental chemical processes for battery materials in response to ion insertion. The interplay between these two chemical processes has never been directly seen and understood at atomic scale. Here, using in situ HRTEM, we captured the atomistic conversion reaction processes during Li, Na, Ca insertion into a WO3 single crystal model electrode. An intercalation step prior to conversion is explicitly revealed at atomic scale for the first time for Li, Na, Ca. Nanoscale diffraction and ab initio molecular dynamic simulations revealed that after intercalation, the inserted ion–oxygen bond formation destabilizes the transition‐metal framework which gradually shrinks, distorts and finally collapses to an amorphous W and MxO (M=Li, Na, Ca) composite structure. This study provides a full atomistic picture of the transition from intercalation to conversion, which is of essential importance for both secondary ion batteries and electrochromic devices.Das Wechselspiel zwischen Ioneninterkalation und Umwandlung des WO3‐Elektrodenmaterials wurde durch In‐situ‐TEM auf atomarer Ebene untersucht. Die Bildung von Ion‐Sauerstoff‐Bindungen destabilisiert das WO3‐GerĂŒst: Es schrumpft, wird verzerrt und fĂ€llt schließlich zu einer amorphen W‐ und MxO‐Verbundstruktur (M=Li, Na, Ca) zusammen.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134843/1/ange201601542_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134843/2/ange201601542.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134843/3/ange201601542-sup-0001-misc_information.pd

    Atomistic Conversion Reaction Mechanism of WO3 in Secondary Ion Batteries of Li, Na, and Ca

    Full text link
    Intercalation and conversion are two fundamental chemical processes for battery materials in response to ion insertion. The interplay between these two chemical processes has never been directly seen and understood at atomic scale. Here, using in situ HRTEM, we captured the atomistic conversion reaction processes during Li, Na, Ca insertion into a WO3 single crystal model electrode. An intercalation step prior to conversion is explicitly revealed at atomic scale for the first time for Li, Na, Ca. Nanoscale diffraction and ab initio molecular dynamic simulations revealed that after intercalation, the inserted ion–oxygen bond formation destabilizes the transition‐metal framework which gradually shrinks, distorts and finally collapses to an amorphous W and MxO (M=Li, Na, Ca) composite structure. This study provides a full atomistic picture of the transition from intercalation to conversion, which is of essential importance for both secondary ion batteries and electrochromic devices.The interplay between ion intercalation and WO3 battery electrode conversion was investigated at atomic scale by using in situ HRTEM. The ion–oxygen bond formation destabilizes the WO3 framework which gradually shrinks, distorts and finally collapses to an amorphous W and MxO (M=Li, Na, Ca) composite structure.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135051/1/anie201601542.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135051/2/anie201601542-sup-0001-misc_information.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135051/3/anie201601542_am.pd

    Replication Stress Induces Micronuclei Comprising of Aggregated DNA Double-Strand Breaks

    Get PDF
    BACKGROUND: Micronuclei (MN) in mammalian cells serve as a reliable biomarker of genomic instability and genotoxic exposure. Elevation of MN is commonly observed in cells bearing intrinsic genomic instability and in normal cells exposed to genotoxic agents. DNA double-strand breaks are marked by phosphorylation of H2AX at serine 139 (Îł-H2AX). One subclass of MN contains massive and uniform Îł-H2AX signals. This study tested whether this subclass of MN can be induced by replication stress. PRINCIPAL FINDINGS: We observed that a large proportion of MN, from 20% to nearly 50%, showed uniform staining by antibodies against Îł-H2AX, a marker of DNA double-strand breaks (DSBs). Such micronuclei were designated as MN-Îł-H2AX (+). We showed that such MN can be induced by chemicals that are known to cause DNA replication stress and S phase arrest. Hydroxyurea, aphidicolin and thymidine could all significantly induce MN-Îł-H2AX (+), which were formed during S phase and appeared to be derived from aggregation of DSBs. MN-Îł-H2AX (-), MN that were devoid of uniform Îł-H2AX signals, were induced to a lesser extent in terms of fold change. Paclitaxel, which inhibits the disassembly of microtubules, only induced MN-Îł-H2AX (-). The frequency of MN-Îł-H2AX (+), but not that of MN-Îł-H2AX (-), was also significantly increased in cells that experience S phase prolongation due to depletion of cell cycle regulator CUL4B. Depletion of replication protein A1 (RPA1) by RNA interference resulted in an elevation of both MN-Îł-H2AX (+) and MN-Îł-H2AX (-). CONCLUSIONS/SIGNIFICANCE: A subclass of MN, MN-Îł-H2AX (+), can be preferentially induced by replication stress. Classification of MN according to their Îł-H2AX status may provide a more refined evaluation of intrinsic genomic instabilities and the various environmental genotoxicants

    Application of Duplex Fluorescence Melting Curve Analysis (FMCA) to Identify Canine Parvovirus Type 2 Variants

    Get PDF
    Canine parvovirus (CPV-2) is an enteric virus causing morbidity and mortality in dogs worldwide. Since CPV-2 emerged as canine pathogen, the original CPV-2 strain has constantly evolved, and its primary variants (CPV-2a, CPV-2b, and CPV-2c) co-circulate to varying extents in canine populations worldwide. Thus, rapid and accurate laboratory diagnoses of CPV-2 variants are crucial to monitor CPV-2 evolution. Conventional methods for CPV-2 genotyping are laborious, time consuming, and determining the genotype of a CPV-2 variant often requires two or more reaction tubes. The present study developed a probe-based fluorescence melting curve analysis (FMCA) for genotyping six different CPV-2 variants (original CPV-2, CPV-2a, CPV-2b, CPV-2c, and vaccine strains of CPVpf and CPVint) in a single reaction tube using only two TaqMan probes. One of the TaqMan probes (FAM labeled) was designed to perfectly match with the target sequence of CPV-2a, this probe allows a 1-bp mismatched hybridization with the CPV-2b VP2 gene region (A4062G), and a 2-bp mismatched hybridization for CPV-2c (A4062G and T4064A); Another TaqMan probe (HEX labeled) was produced to perfectly match with the target sequence of original CPV-2, this probe enables 1-bp mismatched hybridization with the other CPV-2 variants (A3045T). Using the two TaqMan probes, all six CPV-2 variants were readily distinguished by their respective melting temperature values in a single reaction tube. The detection limits of this assay were 1–10 copies per reaction for six CPV-2 construction plasmids and no cross reactions were observed with several other common canine viruses. In this assay, co-infected samples were also directly identified via probe-based FMCA without using a mixing control; only a pure control is required. The clinical evaluation of this assay was demonstrated by analyzing 83 clinical fecal samples, among which 41 (49.39%), 8 (9.63%), and 14 (16.87%) samples were found to be positive for CPV-2a, CPV-2b, and CPV-2c, respectively. The concordance rate between probe-based FMCA and Sanger sequencing was 100%. Thus, the duplex FMCA is effective, rapid, simple, high-throughput, and straightforward for genotyping CPV-2 variants, and is useful to effectively diagnose and monitor CPV-2 epidemiology
    • 

    corecore