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Impact of thermal processing on dietary flavonoids 
Yuan Gao1,*, Wei Xia1,*, Ping Shao2,*, Weijie Wu1,  
Hangjun Chen1, Xiangjun Fang1, Honglei Mu1, Jianbo Xiao3 and  
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Flavonoids are widely distributed in natural products and foods as 
a class of polyphenols. They processed diverse bioactivities, 
including anti-inflammation activity, antiaging activity, and 
antioxidant activity. The foods rich in flavonoids are usually 
consumed after thermal processing. However, flavonoids are 
commonly vulnerable under thermal processing, and it could 
cause various influences on their stability and bioactivities. 
Therefore, in this review, the effects of thermal processing on 
thermal stability and bioactivities of dietary flavonoids from 
different food sources were first summarized. The strategies to 
improve thermal stability of dietary flavonoids were then discussed. 
Noticeably, the effect of some of the promising thermal 
technologies on dietary flavonoids was also clarified preliminarily in 
the current review. The promising thermal technologies may be 
an alternative to conventional thermal processing technologies. 
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Introduction 
Flavonoids are a class of polyphenols, with the typical 
chemical structures containing A, B, C three (C6–C3–C6) 
rings, including flavanols, flavones, isoflavones, flava-
nones, flavan-3-ols, and anthocyanidins [1–4]. Flavonoids 
mainly form fruits, vegetables, cereals and beans, have 
profitable advantages on human health, including anti- 
inflammation activity, antiaging activity, antioxidant ac-
tivity, and antidiabetes activity (Figure 1) [5–10]. 

To meet the safety and shelf-life-stable requirements, 
the processing is inevitable for foods before delivering to 
consumers. Flavonoids are commonly vulnerable under 
different processing conditions, especially thermal pro-
cessing. Thermal processing is a kind of widely used 
processing technique in the food industry and house-
hold cooking. The application of thermal processing has 
been favored by the important technological develop-
ments experienced over the last few years. During 
thermal processing, undesirable microorganisms and 
spoilage enzymes were inactivated, and gastrointestinal 
digestion of food generally enhanced [11,•12]. On the 
other hand, the quality of food (color, taste, nutrients, 
and bioactive compounds) is usually impaired by long- 
time heating, resulting in reduced bioavailability and 
organoleptic property destruction [13]. 

Usually, the dietary flavonoids are vulnerable under 
thermal processing, and their bioactivity usually im-
paired after thermal processing, due to their lower sta-
bility. Therefore, researches related to the impact of 
thermal processing on dietary flavonoids were explored 
to clarify the thermal satiability of flavonoids and 
bioactivity of dietary flavonoids after thermal processing, 
and establish strategies to improve thermal stability of 
dietary flavonoids. The factors, such as thermal proces-
sing techniques, heating temperature, heating time, and 
food matrices, influenced thermal stability of dietary 
flavonoids variously [•14–16]. Some strategies or new 
techniques were applied to improve thermal stability of 
dietary flavonoids, which is becoming a research hotspot  
[•17–19]. The number of publications (indexed by 
Pubmed) on “thermal processing and flavonoid” sharply 
increased since 2011 (Figure 2). Therefore, this review 
will mainly focus on the impacts of thermal processing 
on dietary flavonoids. 
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Influence factor of thermal processing on the 
thermal stability of dietary flavonoids 
The intake of dietary flavonoids is conducive to reduce 
the risk of diseases, partly attributed to intake of dietary 
flavonoids therein. The roasting, barking, steaming, 
frying, and grilling are common thermal processing 
techniques in food industries (Table 1). However, the 
thermal stability of dietary flavonoids was easily influ-
enced by different factors, such as thermal processing 
techniques, heating temperature, heating time, and food 
matrices. The impacts of thermal processing on flavo-
noid content in various food matrices under different 
conditions are shown in Table1. 

The thermal stability of dietary flavonoids under dif-
ferent thermal conditions was distinct. For example, 
only frying (170 °C for 10 min) could increase total fla-
vonoid content (TFC) of dark-purple eggplant (Solanum 
melongena), on the contrary, barking (180 °C for 30 min), 
boiling (100 °C for 20 min), and grilling (120 °C for 
10 min) decreased its TFC [20] (Table 1). Contrary to 
eggplant, barking (180 °C for 30 min), frying (140 °C for 

Figure 1  
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The main resources, chemistry structures, and bioactivities of dietary flavonoids.   

Figure 2  
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The number of publications on “thermal processing and flavonoid” 
indexed by Pubmed database since 2011. 
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8 min), and grilling (110 °C for 15 min) improved TFC of 
onions, and boiling (100 °C for 30 min) reduced its TFC  
[16] (Table 1). It is hard to say that one certain thermal 
processing technique can improve or retain more dietary 
flavonoids. Obviously, the thermal processing method is 
a significant interfering factor influencing satiability of 
dietary flavonoids. 

The temperature of thermal processing is one of 
the critical factors to affect thermal satiability of dietary 
flavonoids. For example, 25–45 ℃ thermal treatment, the 
TFC of mulberry juice was decreased, however, 
45–100 °C thermal treatment increased its TFC [•14] 
(Table 1). The total anthocyanin concentrations of 
blueberry (Vaccinium spp.) puree were changed strangely 
under different temperature treatment (Table1) [21]. 
Processing time is another major factor affecting dietary 
flavonoid satiability. The TFC of teff (Eragrostis tef) was 
increased within 7.5 min of roasting, and decreased after 
10 min, which indicated that thermal processing time 
may be one of the major factors affecting TFC in 
roasting [22] (Table 1). 

Even at the same heating temperature and time, the 
thermal stability of dietary flavonoids was a noticeable 
difference in different food matrices. For example, 
barking at 180 °C for 30 min leads to decreasing of iso-
quercetin, quercetin, TFC in buckwheat bran, and in-
creasing of isoquercetin, rutin, and TFC in buckwheat 
flour [23] (Table 1). The thermal satiability of different 
varieties was various, as evidenced by a marked reduc-
tion in TFC in Liaozhi8 sesame after roasting, however, 

no significant influence on TFC change in ganzhi9, 
ganzhi17, ji9014, ezhi7, and luozhi18 sesame [24] 
(Table 1). The thermal stability of foods in different 
states is also diverse. It was also found that steaming 
could retain more anthocyanins than boiling for solid- 
state food, and boiling was preferable for liquid 
food [15]. 

For further quantitatively describing the impact of 
temperature on degradation, the kinetics of degradation 
of dietary flavonoids were investigated. The thermal 
degradation of anthocyanins followed a first-order ki-
netic model, and the kinetic rate constant increased with 
temperature raised [15,••31]. However, the thermal 
degradation of TFC in button mushroom (Agaricus bis-
porus) was followed by second-order kinetic model, with 
the activation energy 25.38 kJ/mol [32]. In the thermal 
processing, the dietary flavonoids seemly were re-
arrangement, hydrolysis, and cleavage of glycosidic 
bonds, which lead to degradation of the matrix, resulting 
in an apparent increase [30,33]. 

Effect of thermal processing on biological 
bioactivity of dietary flavonoids 
Flavonoids have many biological activities, such as an-
tioxidant, anti-inflammation, and prevention of cardio-
vascular disease activities. Dietary flavonoids are 
sensitive to thermal condition, however, some research 
found that thermal processing can promote its biological 
bioactivity (Figure 3). The thermal processing techni-
ques decreased flavonoid contents of eggplants, how-
ever, promoted their bioavailability on the contrary [20]. 

Figure 3  

Current Opinion in Food Science

Effects of thermal processing on the biological bioactivity of dietary flavonoids.   
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Antioxidant activities of six flavonoids (rutin, naringin, 
eriodictyol, mesquitol, luteolin, and 7-O-glucoside) im-
proved after thermal processing (from 30 to 130 ℃), and 
their thermal-product solutions increased activities of 
intracellular superoxide dismutase and glutathione per-
oxide [34]. 

Even through thermal processing exerted negative ef-
fect inducing flavonoid degradation, some reactions oc-
curred. The heat destroys cell walls and makes bound 
flavonoids hydrolyzed [30,35], which promoted the 
configuration of flavonoids from transformation of so-
luble flavonoids to insoluble-bound flavonoids, and fla-
vonoid glycosides to aglycones [36,•37]. The biological 
bioactivity of dietary flavonoids is closely related to their 
configuration, which may improve their biological 
bioactivity after thermal processing. 

Strategies to improve thermal stability of 
dietary flavonoids 
The use of flavonoid-rich products in food industries and 
house-cooking is limited by their thermal stability. 
Considering the low thermal stability of flavonoids, 
therefore, the strategies to improve thermal stability of 
dietary flavonoids are encouraged [•17,19]. The studies 
related to the effects of bioactive ingredient addition to 
improve the thermal stability of dietary flavonoids were 

performed (Figure 4). The buckwheat in different con-
centrations partially replaced rice noodles, which ex-
hibited a high TFC-retention rate of rice noodles after 
thermal processing [38]. In addition, the xanthan gum or 
phenolics supplementation also preserved thermal sta-
bility of dietary flavonoids after heat treatment [39,40]. 
The β-cyclodextrin microcapsule technology is a pro-
mising strategy to improve the thermal stability of 
mulberry flavonoids, by retaining 90% TFC after 100 °C 
heating treatment [•14]. Recently, the use of bioma-
cromolecule to improve the thermal stability of flavo-
noids has been widely studied, such as protein and 
polysaccharide (Figure 4). The pectic polysaccharide 
interacted with malvidin-3-O-β-D-glucoside to improve 
its thermal stability [•41]. The silkworm pupa pro-
tein–glucose conjugates combined with cyaniding 3-O- 
glucose via hydrophobic interactions and static 
quenching, and therefore enhancing its thermal stability 
over a pH range [42]. 

The effects of promising thermal technologies 
on dietary flavonoids 
The conventional thermal processing (e.g. barking, 
roasting, pasteurization, and steaming) is frequently 
queried, due to their low processing efficiency and 
penalty of nutrients in food. The novel thermal techni-
ques, such as microwave, radiofrequency, and ohmic 

Figure 4  

Current Opinion in Food Science

Strategies to improve thermal stability of dietary flavonoids.   
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heating with short time and low temperature, are re-
garded as promising thermal processes and possess great 
potential to replace conventional thermal processing. 
Microwave heating is usually utilized combined with 
conventional thermal processing techniques. The utili-
zation of microwave heating can effectively shorten 
processing time and costs, and therefore can preserve 
more flavonoid contents than conventional thermal 
processing [43]. For example, with the aid of microwave 
(450 W) combined with hot-air drying of cherry tomato, 
the retention of TFC and lycopene was superior com-
pared with conventional air-drying alone at 65 ◦C [44]. 
Radio-frequency heating is a kind of dielectric heating- 
based technique, which can easily penetrate into the 
inside of the food matrix, and seems to retain more of 
dietary flavonoids than conventional techniques [45]. 
Hot-air-assisted radio-frequency heating (100–105 °C, 
15 min, and 110–115 °C, 6 min) that stabilized rice bran 
demonstrated higher free flavonoid content than ex-
truded rice bran, which provides useful information for 
stabilization method for rice bran [46]. Ohmic heating is 
an electroconductive heating treatment, which is able to 
influence the internal of food matrix, and conducive to 
better retention of dietary flavonoids [47]. The ohmic 
heating is capable of disrupting food matrixes and 
modulating internal components, which could in-
crease free flavonoid content in grape than other con-
ventional techniques [48]. In general, the innovative 
thermal processing techniques probably retained more 
flavonoids in some situation, depending on its intensity 
and aims [••18]. The lower temperature and shorter 
time of food processing are conducive to the retention of 
flavonoids. Additionally, the equipment of some pro-
mising thermal technologies is not suitable for house-
hold cooking, and their application in household cooking 
needs to be further explored. 

Conclusion and perspective 
The thermal processing is usually used to inactivate 
pathogens and undesirable enzymes, which is the most 
widespread processing method for food industry and 
household cooking. However, the dietary flavonoids are 
vulnerable, and easily degraded or converted into various 
derivatives under thermal processing. On the other 
hand, some kinds of flavonoids can be released from the 
food matrix during processing. The flavonoid contents 
and their bioactivities changed variously under different 
food matrices and thermal processing conditions. The 
variations of bioactivities were not in conformity with 
their contents and stabilities. However, the change me-
chanism of dietary flavonoids and their thermal- de-
gradation products in food matrices during thermal 
processing were not studied thoroughly. This is probably 
because the reaction between dietary flavonoids and 
other components in food matrices is complicated and 
their change patterns are hard to clarify. In order to 

maintain the stability of dietary flavonoids, the in-
novative thermal processing techniques with shorter 
time and lower temperature treatment were emerged, 
such as microwave, radiofrequency, and ohmic heating. 
Some equipment of promising thermal technologies may 
not be suitable for household cooking, which limited 
their application in household cooking. Overall, these 
innovative techniques need to be further studied in the 
food industry and household cooking to improve the 
thermal satiability of dietary flavonoids. 
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