10 research outputs found

    Annual and Seasonal Surface Circulation Over the Mid-Atlantic Bight Continental Shelf Derived From a Decade of High Frequency Radar Observations

    Get PDF
    A decade (2007–2016) of hourly 6-km-resolution maps of the surface currents across the Mid-Atlantic Bight (MAB) generated by a regional scale High Frequency Radar network are used to reveal new insights into the spatial patterns of the annual and seasonal mean surface flows. Across the 10-year time series, temporal means and interannual and intra-annual variability are used to quantify the variability of spatial surface current patterns. The 10-year annual mean surface flows are weaker and mostly cross-shelf near the coast, increasing in speed and rotating to more alongshore directions near the shelfbreak, and increasing in speed and rotating to flow off-shelf in the southern MAB. The annual mean surface current pattern is relatively stable year to year compared to the hourly variations within a year. The 10-year seasonal means exhibit similar current patterns, with winter and summer more cross-shore while spring and fall transitions are more alongshore. Fall and winter mean speeds are larger and correspond to when mean winds are stronger and cross-shore. Summer mean currents are weakest and correspond to a time when the mean wind opposes the alongshore flow. Again, intra-annual variability is much greater than interannual, with the fall season exhibiting the most interseasonal variability in the surface current patterns. The extreme fall seasons of 2009 and 2011 are related to extremes in the wind and river discharge events caused by different persistent synoptic meteorological conditions, resulting in more or less rapid fall transitions from stratified summer to well-mixed winter conditions

    A Cycle of Wind-Driven Canyon Upwelling and Downwelling at Wilmington Canyon and the Evolution of Canyon-Upwelled Dense Water on the MAB Shelf

    Get PDF
    Submarine canyons provide a conduit for shelf-slope exchange via topographically induced processes such as upwelling and downwelling. These processes in the Wilmington Canyon, located along the shelf-break of the Mid-Atlantic Bight (MAB), have not been previously studied, and the associated hydrographic variability inside the canyon and on the adjacent shelf are largely unknown. Observations from an underwater glider deployed in Wilmington Canyon (February 27 - March 8, 2016), along with wind and satellite altimetry data, showed evidence for a wind-driven canyon upwelling event followed by a subsequent downwelling event. Next, a numerical model of the MAB was developed to more fully represent these two events. Modeled results showed that under upwelling-favorable winds during February 25 - March 3, sea level increased seaward, shelf currents flowed northeastward, and canyon upwelling developed. Then under downwelling-favorable winds during March 4-7, sea level increased landward, shelf currents flowed southwestward, and canyon downwelling developed. Modeling experiments showed that canyon upwelling and downwelling were sub-tidal processes driven by winds and pressure gradients (associated with SSH gradients), and they would occur with or without tidal forcing. During the upwelling period, slope water originating from 150-215 m depths within the canyon (75 m below the canyon rim), was advected onto the shelf, forming a cold and dense canyon-upwelled slope-originated overflow water at the bottom of the outer shelf (75-150 m isobaths). The dense overflow current flowed was directed northeastward and expanded in the cross-shelf direction. It was 5-20 km wide and 10-30 m thick. The estimated volume of the plume overflow water exceeded 6×109 m3 at peak. The density front at the shoreward side of the dense overflow water caused a subsurface baroclinic frontal jet, which flowed northeastward and along-shelf with maximum speed exceeding 0.5 m/s. In the ensuing downwelling event, a portion of the previously upwelled dense water was advected back to the canyon, and then flowed down-slope in the upper canyon in ~0.3 m/s bottom-intensified currents. Dynamical investigation of the overflow current showed that its evolution was governed by unbalanced horizontal pressure gradient force in the cross-shelf direction and that the current was geostrophic

    Annual and Seasonal Surface Circulation Over the Mid Atlantic Bight Continental Shelf Derived From a Decade of High Frequency Radar Observations

    Get PDF
    A decade (2007–2016) of hourly 6‐km‐resolution maps of the surface currents across the Mid‐Atlantic Bight (MAB) generated by a regional‐scale High Frequency Radar network are used to reveal new insights into the spatial patterns of the annual and seasonal mean surface flows. Across the 10‐year time series, temporal means and interannual and intra‐annual variability are used to quantify the variability of spatial surface current patterns. The 10‐year annual mean surface flows are weaker and mostly cross‐shelf near the coast, increasing in speed and rotating to more alongshore directions near the shelfbreak, and increasing in speed and rotating to flow off‐shelf in the southern MAB. The annual mean surface current pattern is relatively stable year to year compared to the hourly variations within a year. The 10‐year seasonal means exhibit similar current patterns, with winter and summer more cross‐shore while spring and fall transitions are more alongshore. Fall and winter mean speeds are larger and correspond to when mean winds are stronger and cross‐shore. Summer mean currents are weakest and correspond to a time when the mean wind opposes the alongshore flow. Again, intra‐annual variability is much greater than interannual, with the fall season exhibiting the most interseasonal variability in the surface current patterns. The extreme fall seasons of 2009 and 2011 are related to extremes in the wind and river discharge events caused by different persistent synoptic meteorological conditions, resulting in more or less rapid fall transitions from stratified summer to well‐mixed winter conditions

    Spatio-temporal characteristics of PM2.5 and O3 synergic pollutions and influence factors in the Yangtze River Delta

    Get PDF
    Since the implementation of pollution prevention and control action in China in 2013, particulate pollution has been greatly reduced, while ozone pollution has become gradually severe, especially in the economically developed eastern region. Recently, a new situation of air pollution has emerged, namely, enhanced atmospheric oxidation, ascending regional ozone pollution, and increasing particle and ozone synergic pollution (i.e., double-high pollution). Based on the long-term observation data from 2015 to 2021, we examined the spatio-temporal characteristics of urban PM2.5 and O3 pollution in the Yangtze River Delta and quantified the effects of meteorological and non-meteorological factors on pollution in four city clusters using stepwise multiple linear regression models. Temporally, PM2.5 decreased gradually year by year while, O3 increased in city clusters. Spatially, PM2.5 declined from northwest to southeast, while O3 decreased from northeast to southwest. Except for southern Zhejiang, other city clusters suffer from complex air pollution at different levels. In general, pollution intensity and frequency vary with city location and time. Single PM2.5 pollution mostly occurred in northern Anhui. Single O3 pollution occurred in central and southern Jiangsu and northern Zhejiang. Synergic pollutions of PM2.5 and O3 mainly occurred in central Jiangsu. The contributions (90%) of non-meteorological factors (e.g., anthropogenic emission) to PM2.5 decrease and O3 increase are far larger than that of meteorological factors (5%). Relative humidity, sea level pressure, and planetary boundary layer height are the most important meteorological factors to drive PM2.5 changes during pollution. Downward solar radiation, total cloud cover, and precipitation are the most important meteorological factors that affect O3 changes during pollution. The results provide insights into particulate and ozone pollution in the Yangtze River Delta and can help policymakers to formulate accurate air pollution prevention and control strategies at urban and city cluster scales in the future

    Recent trends and developments in the asymmetric synthesis of profens

    No full text
    The profens belong to a class of nonsteroidal anti-inflammatory drugs (NSAIDs), which exert significant anti-inflammatory, analgesic, antipyretic and other pharmacological effects. A considerable number of catalytic asymmetric strategies for the synthesis of enantioenriched profens have been introduced. Herein are outlined recent trends and developments of promising catalytic enantioselective systems for the generation of profens and their derivatives. According to the reaction type, we divided these transformations into three categories: Transition metal-catalyzed asymmetric hydrogenations, transition metal-catalyzed asymmetric cross-couplings and organocatalytic asymmetric transformations. Overviews of generic reaction mechanisms are presented. Ideally, this tutorial review will motivate further interest in the catalytic asymmetric synthesis of highly enantioenriched profens

    Whole-Transcriptome Profiling and Functional Prediction of Long Non-Coding RNAs Associated with Cold Tolerance in Japonica Rice Varieties

    No full text
    Low-temperature chilling is a major abiotic stress leading to reduced rice yield and is a significant environmental threat to food security. Low-temperature chilling studies have focused on physiological changes or coding genes. However, the competitive endogenous RNA mechanism in rice at low temperatures has not been reported. Therefore, in this study, antioxidant physiological indices were combined with whole-transcriptome data through weighted correlation network analysis, which found that the gene modules had the highest correlation with the key antioxidant enzymes superoxide dismutase and peroxidase. The hub genes of the superoxide dismutase-related module included the UDP-glucosyltransferase family protein, sesquiterpene synthase and indole-3-glycerophosphatase gene. The hub genes of the peroxidase-related module included the WRKY transcription factor, abscisic acid signal transduction pathway-related gene plasma membrane hydrogen-ATPase and receptor-like kinase. Therefore, we selected the modular hub genes and significantly enriched the metabolic pathway genes to construct the key competitive endogenous RNA networks, resulting in three competitive endogenous RNA networks of seven long non-coding RNAs regulating three co-expressed messenger RNAs via four microRNAs. Finally, the negative regulatory function of the WRKY transcription factor OsWRKY61 was determined via subcellular localization and validation of the physiological indices in the mutant

    Radical-Smiles Rearrangement by a Vitamin B2-Derived Photocatalyst in Water

    No full text
    Herein, we report a catalytic radical-Smiles rearrangement system of arene migration from ether to carboxylic acid with riboflavin tetraacetate (RFT), a readily available ester of natural vitamin B2, as the photocatalyst and water as a green solvent, being free of external oxidant, base, metal, inert gas protection, and lengthy reaction time. Not only the known substituted 2-phenyloxybenzoic acids substrates but also a group of naphthalene- and heterocycle-based analogues was converted to the corresponding aryl salicylates for the first time. Mechanistic studies, especially a couple of kinetic isotope effect (KIE) experiments, suggested a sequential electron transfer-proton transfer processes enabled by the bifunctional flavin photocatalyst

    Aerobic Alcohol Oxidation with a Cerium–Phenanthrolinedione Complex: A Mimic of Lanthanide-Based Methanol Dehydrogenase

    No full text
    The development of efficient catalytic systems that use an environmentally friendly oxidant, such as molecular oxygen, remains an ongoing challenge in the oxidative transformation of hydrocarbons. Herein, we report the synthesis and characterization of a bioinspired cerium(III) catalyst bearing a commercially available 1,10-phenanthroline-5,6-dione (phd) ligand, an inexpensive and efficient molecular model of the pyrroloquinoline quinone (PQQ) cofactor. This Ce–phd complex, in which the cerium(III) ion acts as a Lewis acid center and the phd ligand regulates the redox process, shows good reactivity in the catalytic oxidation of various alcohols using air as an oxidant and no need for any cocatalyst, base, desiccant, or solvent pretreatment. Secondary benzylic and aliphatic alcohols and aromatic primary alcohols were converted to the corresponding ketones and aldehydes with good yields, respectively. In addition, this Ce–phd complex exhibited good chemoselectivity for the oxidation of alcohols over other labile groups, the secondary alcohols over primary alcohols, and benzylic alcohols over aliphatic alcohols by intramolecular and intermolecular competitive reactions. The catalytic reaction mechanism is proposed as a possible hydride transfer process on the basis of the studies of probe substrates, the kinetic isotope effect (KIE), Hammett plot, UV–vis spectra analysis, and stoichiometric reactions. The present results provide not only a practical mimic of PQQ-dependent methanol dehydrogenases (MDH) with earth-abundant cerium and a simple ligand but also an efficient, selective, and sustainable approach to the catalytic aerobic oxidation of alcohols
    corecore