115 research outputs found

    Food Safety Problems in China: Based on the Illegally Waste Cooking Oil

    Get PDF
    The illegal oil (coming from the waste cooking oil and animals’ fat, etc.) is being processed as daily edible oil by a series of processing programs in China. It contains enormous toxic carcinogenic substances such as aflatoxin, dioxins, and polychlorinated biphenyls (PCBs), etc. In China, 22 million tons of cooking oil is approximately consumed each year, however, 2-3 million tons (account for 10%) of the illegal oil is circulated back to the daily market finally. This research aims to analyze four parts among the illegal oil. It combines the Chinese food safety legal loophole with the treatments of other developed countries to solve China’s illegal oil problem. What’s more, carrying out a field survey is conducted to understand the source of the illegal oil and have a clear understanding of consumers’ usage. Next, the main reason for the spread of the illegal oil which is from the street stalls and restaurants is revealed. The new technique is also used to transform the illegal oil into biodiesel fuel (BDF), however, the material (the illegal oil) cannot be easily obtained due to many barriers and challenges in China. Based on the field survey results, setting up a specific feedback mechanism for restaurants/hotels and the other policy implications are proposed to China’s governments for solving the illegal oil issue in China

    Local Action for Realizing Sustainable Society: A Survey of Japanese "Futurecity" Initiative

    Get PDF
    To convert a society to a sustainable system, attempts are required not only at international and governmental levels, but also at regional levels. It is necessary to challenge multiple issues through cooperation among various actors, such as national governments, local governments, private enterprises and residents. In Japan, one of the initiatives to achieve “the sustainable” at regional level is the “FutureCity” initiative. This is a part of National Strategic Projects in “New Growth Strategy”, which Japanese government introduced in 2010. The purpose of the “Futurecity” initiative is to create the capacity in cities to deal with environmental issues and problems of aging society, as well as establishing sustainable socioeconomic system with environmental aspects, social aspects and economic aspects. Japanese government selected, as the “FutureCity”, the five cities (Yokohama city, Shimokawa town, Kashiwa city, Toyama city and Kitakyusyu city) for making pioneering effort on these challenges, and the six cities that were hit by the Great East Japan Earthquake and great Tsunami in 2011. This “Future city” is expected to provide model solution of human common issues as a forerunner. The object of this research is to define the current situations and problems of the “FutureCity” initiative, through a case study on Yokohama city in Kanagawa prefecture, which is characterized as a big city in Japan. Here, we examined how Yokohama city is tackling the environmental issues and problems of aging society as the “FutureCity” and what problems it has in maintaining their initiative itself as a local government. In addition, we considered how, at international level, Japanese “FutureCity” initiative can contribute to realizing sustainable societ

    GlyphControl: Glyph Conditional Control for Visual Text Generation

    Full text link
    Recently, there has been a growing interest in developing diffusion-based text-to-image generative models capable of generating coherent and well-formed visual text. In this paper, we propose a novel and efficient approach called GlyphControl to address this task. Unlike existing methods that rely on character-aware text encoders like ByT5 and require retraining of text-to-image models, our approach leverages additional glyph conditional information to enhance the performance of the off-the-shelf Stable-Diffusion model in generating accurate visual text. By incorporating glyph instructions, users can customize the content, location, and size of the generated text according to their specific requirements. To facilitate further research in visual text generation, we construct a training benchmark dataset called LAION-Glyph. We evaluate the effectiveness of our approach by measuring OCR-based metrics and CLIP scores of the generated visual text. Our empirical evaluations demonstrate that GlyphControl outperforms the recent DeepFloyd IF approach in terms of OCR accuracy and CLIP scores, highlighting the efficacy of our method.Comment: Technical report. The codes will be released at https://github.com/AIGText/GlyphControl-releas

    A 3D-printed microfluidic-enabled hollow microneedle architecture for transdermal drug delivery.

    Get PDF
    Embedding microfluidic architectures with microneedles enables fluid management capabilities that present new degrees of freedom for transdermal drug delivery. To this end, fabrication schemes that can simultaneously create and integrate complex millimeter/centimeter-long microfluidic structures and micrometer-scale microneedle features are necessary. Accordingly, three-dimensional (3D) printing techniques are suitable candidates because they allow the rapid realization of customizable yet intricate microfluidic and microneedle features. However, previously reported 3D-printing approaches utilized costly instrumentation that lacked the desired versatility to print both features in a single step and the throughput to render components within distinct length-scales. Here, for the first time in literature, we devise a fabrication scheme to create hollow microneedles interfaced with microfluidic structures in a single step. Our method utilizes stereolithography 3D-printing and pushes its boundaries (achieving print resolutions below the full width half maximum laser spot size resolution) to create complex architectures with lower cost and higher print speed and throughput than previously reported methods. To demonstrate a potential application, a microfluidic-enabled microneedle architecture was printed to render hydrodynamic mixing and transdermal drug delivery within a single device. The presented architectures can be adopted in future biomedical devices to facilitate new modes of operations for transdermal drug delivery applications such as combinational therapy for preclinical testing of biologic treatments

    Clinical Evaluation of an Auto-Segmentation Tool for Spine SBRT Treatment.

    Get PDF
    Purpose: Spine SBRT target delineation is time-consuming due to the complex bone structure. Recently, Elements SmartBrush Spine (ESS) was developed by Brainlab to automatically generate a clinical target volume (CTV) based on gross tumor volume (GTV). The aim of this project is to evaluate the accuracy and efficiency of ESS auto-segmentation. Methods: Twenty spine SBRT patients with 21 target sites treated at our institution were used for this retrospective comparison study. Planning CT/MRI images and physician-drawn GTVs were inputs for ESS. ESS can automatically segment the vertebra, split the vertebra into 6 sectors, and generate a CTV based on the GTV location, according to the International Spine Radiosurgery Consortium (ISRC) Consensus guidelines. The auto-segmented CTV can be edited by including/excluding sectors of the vertebra, if necessary. The ESS-generated CTV contour was then compared to the clinically used CTV using qualitative and quantitative methods. The CTV contours were compared using visual assessment by the clinicians, relative volume differences (RVD), distance of center of mass (DCM), and three other common contour similarity measurements such as dice similarity coefficient (DICE), Hausdorff distance (HD), and 95% Hausdorff distance (HD95). Results: Qualitatively, the study showed that ESS can segment vertebra more accurately and consistently than humans at normal curvature conditions. The accuracy of CTV delineation can be improved significantly if the auto-segmentation is used as the first step. Conversely, ESS may mistakenly split or join different vertebrae when large curvatures in anatomy exist. In this study, human interactions were needed in 7 of 21 cases to generate the final CTVs by including/excluding sectors of the vertebra. In 90% of cases, the RVD were within ±15%. The RVD, DCM, DICE, HD, and HD95 for the 21 cases were 3% ± 12%, 1.9 ± 1.5 mm, 0.86 ± 0.06, 13.34 ± 7.47 mm, and 4.67 ± 2.21 mm, respectively. Conclusion: ESS can auto-segment a CTV quickly and accurately and has a good agreement with clinically used CTV. Inter-person variation and contouring time can be reduced with ESS. Physician editing is needed for some occasions. Our study supports the idea of using ESS as the first step for spine SBRT target delineation to improve the contouring consistency as well as to reduce the contouring time

    Clinical Evaluation of an Auto-Segmentation Tool for Spine SBRT Treatment

    Get PDF
    Purpose: Spine SBRT target delineation is time-consuming due to the complex bone structure. Recently, Elements SmartBrush Spine (ESS) was developed by Brainlab to automatically generate a clinical target volume (CTV) based on gross tumor volume (GTV). The aim of this project is to evaluate the accuracy and efficiency of ESS auto-segmentation. Methods: Twenty spine SBRT patients with 21 target sites treated at our institution were used for this retrospective comparison study. Planning CT/MRI images and physician-drawn GTVs were inputs for ESS. ESS can automatically segment the vertebra, split the vertebra into 6 sectors, and generate a CTV based on the GTV location, according to the International Spine Radiosurgery Consortium (ISRC) Consensus guidelines. The auto-segmented CTV can be edited by including/excluding sectors of the vertebra, if necessary. The ESS-generated CTV contour was then compared to the clinically used CTV using qualitative and quantitative methods. The CTV contours were compared using visual assessment by the clinicians, relative volume differences (RVD), distance of center of mass (DCM), and three other common contour similarity measurements such as dice similarity coefficient (DICE), Hausdorff distance (HD), and 95% Hausdorff distance (HD95). Results: Qualitatively, the study showed that ESS can segment vertebra more accurately and consistently than humans at normal curvature conditions. The accuracy of CTV delineation can be improved significantly if the auto-segmentation is used as the first step. Conversely, ESS may mistakenly split or join different vertebrae when large curvatures in anatomy exist. In this study, human interactions were needed in 7 of 21 cases to generate the final CTVs by including/excluding sectors of the vertebra. In 90% of cases, the RVD were within ±15%. The RVD, DCM, DICE, HD, and HD95 for the 21 cases were 3% ± 12%, 1.9 ± 1.5 mm, 0.86 ± 0.06, 13.34 ± 7.47 mm, and 4.67 ± 2.21 mm, respectively. Conclusion: ESS can auto-segment a CTV quickly and accurately and has a good agreement with clinically used CTV. Inter-person variation and contouring time can be reduced with ESS. Physician editing is needed for some occasions. Our study supports the idea of using ESS as the first step for spine SBRT target delineation to improve the contouring consistency as well as to reduce the contouring time

    Efficacy of Scalp-Sparing Volumetric-Modulated Arc Therapy Approach in Reducing Scalp Radiation Dose for Patients with Glioblastoma: A Cross-Sectional Study

    Get PDF
    BACKGROUND: Radiation is integral to the treatment of glioblastoma (GBM). However, radiation-induced scalp toxicity can negatively impact patients\u27 quality of life. Volumetric modulated arc therapy (VMAT) optimizes the dose to organs at risk (OARs). We hypothesize that a scalp-sparing VMAT (SSV) approach can significantly reduce undesirable doses to the scalp without compromising the target dose. METHODS: This is a retrospective cross-sectional study of GBM patients who originally received radiation with non-SSV. We contoured the scalp as a 5 mm rind-like structure beneath the skin above the level of the foramen magnum. We replanned our patients using SSV techniques. We compared dosimetric data for the scalp, planning target volume (PTV), and select critical normal structures between non-SSV and SSV plans. RESULTS: Nineteen patients with newly diagnosed GBMs were included in our study. All patients received 60 Gy in 30 fractions. 9 patients received it in a single course. The rest received 46 Gy in 23 fractions to an initial volume followed by 14 Gy in 7 fractions to a cone-down volume (split course). New VMAT plans were generated after adding the scalp as an OAR. The median scalp volume was 416 cm3 (363-468 cm3). The median reductions in scalp Dmin, Dmax, and Dmean were 43.5% (-100% to 0%), 2.8% (+13.4% to -24.9%), and 15.7% (+2.1% to -39.9%) respectively. Median reductions in scalp D20cc and D30 cc were 19.5% (-2.7% to -54.5%), and 19.0% (-5.3% to -39.5%) respectively. The median volumes of the scalp receiving 30 Gy, 40 Gy, and 50 Gy were reduced by 42.3% (-70.6% to -12.5%), 72% (-100% to -2.3%), and 92.4% (-100% to +5.4%) respectively. There were no significant differences in the doses delivered to the PTV, brainstem, optic nerves, and optic chiasm between SSV and non-SSV plans. CONCLUSIONS: SSV can significantly reduce scalp radiation dose without compromising target coverage or critical normal structure doses. This may translate into reduced acute and late radiation toxicity to the scalp. A prospective trial evaluating the clinical benefits of SSV is ongoing (NCT03251027)
    • …
    corecore