37 research outputs found

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Discovery of novel 4-hydroxyquinolines as indoleamine 2, 3-dioxygenase 1 inhibitors by virtual screening

    No full text
    Objective To discover novel indoleamine 2, 3-dioxygenase 1 (IDO1) inhibitors with new scaffold structures by screening ZINC and Chembridge databases using pharmacophore modeling and molecular docking. Methods We performed virtual screening of the ZINC database by molecular docking targeting the enzymatic active site of IDO1. The compounds with high scores were selected for enzyme activity test to find the new leads; A pharmacophore model was constructed based on 3 established IDO1 inhibitors that had been tested in clinical trials for virtual screening of the analogues of the lead compounds. The compounds matching the pharmacophore model were selected for inhibitory activity test, and the molecular dynamics was simulated to explore the binding mode of the compounds to IDO1. Results With molecular docking, we identified 11 lead compounds from more than 2 million virtual compounds and measured their enzyme activity. Among them, ZINC91657208 with a skeleton of 4-hydroxyquinoline was found to effectively inhibit the enzyme activity of IDO1 with an IC50 value of 77.15 ÎĽmol/L. Thirty-one analogues were obtained by substructure retrieval with 4-hydroxyquinoline skeleton. Ten compounds were selected by pharmacophore virtual screening and their inhibitory effect on the enzyme activity of IDO1 was tested. Three of the 10 compounds showed obvious inhibitory activities, and among them Chembridge29374490 had the lowest IC50 of 37.78 ÎĽmol/L, whose root mean square deviations (RMSD) of the skeleton were 1Ă… and 2.4Ă… after equilibrium by molecular dynamics simulation. Conclusion We identified new 4-hydroxyquinoline IDO1 inhibitors from ZINC and Chembridge databases

    Ultrafiltration Extract of Radix Angelica Sinensis and Radix Hedysari Attenuates Risk of Low-Dose X-Ray Radiation-Induced Myocardial Fibrosis In Vitro

    No full text
    The risk of radiation-induced heart damage (RIHD) is a growing concern since recent advances in radiation therapy (RT) for cancer treatments have significantly improved the number of survivors. Radiation-induced myocardial fibrosis (RIMF) is the final pathological condition of RIHD and main change leading to serious cardiovascular complications following RT. The aim of this study was to investigate the effect of ultrafiltration extract of Radix Angelica Sinensis and Radix Hedysari (RAS-RH) on the proliferation, apoptosis, and reactive oxygen species (ROS) of cardiac fibroblasts after X-irradiation in vitro. The RAS-RH extract was from the Danggui Buxue decoction (DBD) in TCM. Primary cardiac fibroblasts were irradiated with 1 Gy X-ray to evaluate the effect of RAS-RH on the expression levels of cell proliferation, apoptosis, ROS, and fibrotic molecules. Our data demonstrated that X-irradiation at 1 Gy resulted in the proliferation of cardiac fibroblasts; RAS-RH attenuated the myocardial fibrosis. Furthermore, X-ray radiation reduced the apoptosis of cardiac fibroblasts; RAS-RH accelerated the apoptosis of these cells after irradiation. In addition, the damage driven by ROS in primary cardiac fibroblasts after irradiation was weakened by RAS-RH and the expression of TGF-β1, Col1, and α-SMA increased after irradiation; RAS-RH decreased the expression of these makers. Overall, these data indicate that low-dose X-ray irradiation boosts myocardial fibrosis, and the effect of RAS-RH protects against fibrosis via attenuating the proliferation and accelerating the apoptosis of myocardial fibroblasts after X-irradiation

    Multi-Omics Integration to Reveal the Mechanism of Sericin Inhibiting LPS-Induced Inflammation

    No full text
    Sericin is a natural protein with high application potential, but the research on its efficacy is very limited. In this study, the anti-inflammatory mechanism of sericin protein was investigated. Firstly, the protein composition of sericin extracts was determined by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). This was then combined with Enzyme-linked Immunosorbent Assay (ELISA) and Quantitative Real-time PCR (qRT-PCR), and it was confirmed that the anti-inflammation ability of sericin was positively correlated with the purity of sericin 1 protein. Finally, RNA-seq was performed to quantify the inhibitory capacity of sericin sample SS2 in LPS-stimulated macrophages. The gene functional annotation showed that SS2 suppressed almost all PRRs signaling pathways activated by lipopolysaccharides (LPS), such as the Toll-like receptors (TLRs) and NOD-like receptors (NLRs) signaling pathways. The expression level of adaptor gene MyD88 and receptor gene NOD1 was significantly down-regulated after SS2 treatment. SS2 also reduced the phosphorylation levels of NF-κB P65, P38, and JNK, thereby reducing the expressions of IL-1β, IL-6, INOS, and other inflammatory cytokines. It was confirmed that sericin inhibited LPS-induced inflammation through MyD88/NF-κB pathway. This finding provides necessary theoretical support for sericin development and application

    PD-1-Targeted Discovery of Peptide Inhibitors by Virtual Screening, Molecular Dynamics Simulation, and Surface Plasmon Resonance

    No full text
    The blockade of the programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) pathway plays a critical role in cancer immunotherapy by reducing the immune escape. Five monoclonal antibodies that antagonized PD-1/PD-L1 interaction have been approved by the Food and Drug Administration (FDA) and marketed as immunotherapy for cancer treatment. However, some weaknesses of antibodies, such as high cost, low stability, poor amenability for oral administration, and immunogenicity, should not be overlooked. To overcome these disadvantages, small-molecule inhibitors targeting PD-L1 were developed. In the present work, we applied in silico and in vitro approaches to develop short peptides targeting PD-1 as chemical probes for the inhibition of PD-1–PD-L1 interaction. We first predicted the potential binding pocket on PD-1/PD-L1 protein–protein interface (PPI). Sequentially, we carried out virtual screening against our in-house peptide library to identify potential ligands. WANG-003, WANG-004, and WANG-005, three of our in-house peptides, were predicted to bind to PD-1 with promising docking scores. Next, we conducted molecular docking and molecular dynamics (MD) simulation for the further analysis of interactions between our peptides and PD-1. Finally, we evaluated the affinity between peptides and PD-1 by surface plasmon resonance (SPR) binding technology. The present study provides a new perspective for the development of PD-1 inhibitors that disrupt PD-1–PD-L1 interactions. These promising peptides have the potential to be utilized as a novel chemical probe for further studies, as well as providing a foundation for further designs of potent small-molecule inhibitors targeting PD-1
    corecore