24 research outputs found

    Effects of Gel Properties and Water Migration during Ultra-High Pressure Coupled Heat Treatment on Bighead Carp Surimi

    Get PDF
    In order to elucidate the mechanism of the changes in gel properties of bighead carp surimi during ultra-high pressure coupled heat treatment, this paper investigated the changes in gel properties, protein structure and water migration of bighead carp surimi during ultra-high pressure coupled heat treatments (300 MPa/5 min, 40 ℃/30 min, 90 ℃/20 min), and carried out clustered heat maps and Pearson correlation analyses. The results showed that ultra-high pressure coupled heat treatment significantly improved the gel properties of bighead carp surimi (P<0.05). The gel strength, texture and whiteness of bighead carp surimi gel showed an increasing trend with ultra-high pressure, ultra-high pressure combined with one-stage heat treatment, and ultra-high pressure combined with two-stage heat treatment. The gel strength and whiteness of the ultra-high pressure coupled heat treatment (300PSH) surimi gels increased by 477.75% and 43.38%, respectively, compared to the atmospheric pressure treated samples (0.1P). The proportion of β-folded structure in the proteins of bighead carp surimi gels increased significantly (P<0.05) during the different treatments, and myosin heavy chain cross-linked aggregation. Meanwhile, the content of active sulfhydryl groups and surface hydrophobicity of surimi gel were significantly reduced (P<0.05), and the proteins formed a denser and more ordered network structure through disulfide bonds and hydrophobic interaction, leading to the migration of immobile water to bound water, which ultimately resulted in significant improvements in the gel strength, texture properties, whiteness and water holding capacity of surimi gel. This study can provide theoretical basis for application of ultra-high pressure coupled heat treatment technology and development of bighead surimi products

    The role of environmental conditions, climatic factors and spatial processes in driving multiple facets of stream macroinvertebrate beta diversity in a climatically heterogeneous mountain region

    Get PDF
    Highlights • We tested patterns of multi-faceted beta diversity across mountain streams. • All three facets of beta diversities increase from the north slope to south slope. • Spatial variables were most important in structuring three facets of beta diversity. • Functional and phylogenetic beta diversity complement to taxonomic beta diversity. • Combining multi-faceted biodiversity is essential for management and conservation.There is a growing recognition that examining patterns of ecological communities and their underlying determinants is not only feasible based on taxonomic data, but also functional and phylogenetic approaches. This is because these additional facets can enhance the understanding of the relative contribution of multiple processes in shaping biodiversity. However, few studies have focused on multifaceted beta diversities in lotic macroinvertebrates, especially when considering driving factors operating at multiple spatial scales. Here, we examined the spatial patterns of multi-faceted (i.e., taxonomic, functional and phylogenetic) beta diversity and their components (i.e., turnover and nestedness) of macroinvertebrates in 50 sites in 10 streams situated in the north and south slope of the Qinling Mountains, the geographical dividing line of Northern and Southern China. We found that the streams draining the north slope showed significantly lower values of beta diversity based on all three facets than the streams draining the south slope. Such north-to-south increases of beta diversity were caused by the distinct climatic and local environmental conditions between the sides of the mountain range. Moreover, spatial variables generally played the most important role in structuring all facets and components of beta diversity, followed by local environmental and climatic variables, whereas catchment variables were less important. Despite the similar results of relative contribution of explanatory variables on each beta diversity facet, the details of community-environment relationships (e.g., important explanatory variables and explanatory power) were distinct among different diversity facets and their components. In conclusion, measuring functional and phylogenetic beta diversity provides complementary information to traditional taxonomic approach. Therefore, an integrative approach embracing multiple facets of diversity can better reveal the mechanisms shaping biodiversity, which is essential in assessing and valuing aquatic ecosystems for biodiversity management and conservation

    Underlying Topography Inversion Using TomoSAR Based on Non-Local Means for an L-Band Airborne Dataset

    No full text
    The underlying topography is an important part of the three-dimensional structure of forests, and is used for a variety of applications, such as hydrology and water resource management, civil engineering projects, and forest resource surveying. Due to the three-dimensional imaging ability and strong penetration, the tomographic synthetic aperture radar (TomoSAR) with a long wavelength has been shown to be a useful tool to estimate the underlying topography. At present, most of the current methods use the local means method to estimate the sample covariance matrix, in which the vertical backscattering power is estimated. However, these methods cannot easily obtain high-precision underlying topography, and often lose some detailed information. In this paper, to solve this problem, a non-local means method is introduced to estimate the optimal covariance matrix by combining weighted neighborhood pixels. To validate the feasibility and effectiveness of this proposed method, a BioSAR 2008 campaign L-band dataset acquired from the northern forests of Sweden was used to inverse the underlying topography. The results show that the accuracy of the underlying topography retrieved by the proposed method is improved by more than 30% when compared with the traditional method

    Transgenic Cry1Ac cotton does not affect the development and fecundity of Chrysoperla carnea.

    No full text
    The development and fecundity of the predator Chrysoperla carnea Stephens (Neuroptera: Chrysopidae) were assessed by feeding Aphis gossypii Glover (Hemiptera: Aphididae) that had been reared on transgenic Bacillus thuringiensis (Bt) cotton SGK321 and a non-Bt cotton control (SY321) for two successive generations. We found no significant differences in the developmental stage duration, stage survival, or egg hatch rate between C. carnea fed A. gossypii reared on the Bt and non-Bt cotton. The fecundity per female over a 25-day observation period was very similar between treatments; for C. carnea fed A. gossypii reared on SGK321 vs. SY321, the amount of eggs laid was not significantly different in both generations. Furthermore, a population dynamics of A. gossypii and lacewing (mainly C. carnea) were highly similar in the SGK321 and SY321 treatments during 2016-2017. These results suggest that Bt cotton does not have a significantly negative or positive effect on C. carnea in terms of development, survival, fecundity, or population dynamics

    Aphid parasitism and parasitoid diversity in cotton fields in Xinjiang, China.

    No full text
    Aphids are major pests of cotton crops in the Xinjiang Uygur Autonomous Region in China, and parasitoids are considered as important natural enemies in regulating aphid populations. However, information on aphid parasitoids in the Xinjiang cotton fields is limited, which hinders the study of aphid-parasitoid interactions and the application of conservation biological control against cotton aphids. In this study, a 3-year survey was conducted in a large geographical range that included three primary cotton planting areas in southern and northern Xinjiang. The population dynamics and the parasitism levels of an assemblage of aphids in the cotton fields were investigated along with the composition of the parasitoid community associated with these aphids. Aphid parasitization varied significantly within both years and seasons, with parasitism levels ranging from 0 to 26%, indicating that there is less effective biological control of parasitoids on aphids under field conditions. Among the primary parasitoids described, Binodoxys communis (Gahan) constituted 95.19% of the parasitoid species, followed by Praon barbatum Mackauer (3.15%), Trioxys asiaticus Telenga (1.01%) and Lysiphlebus fabarum Marshall (0.65%). Significant differences were found in the composition of the primary parasitoid species between the cotton seedling period (June) and the flowering period (July-August), and two more primary aphid parasitoids were found in the seedling period. Twelve hyperparasitoid species belonging to six genera were found in our study, of which Pachyneuron aphidis (Bouché), Syrphophagus species and Dendrocerus laticeps (Hedicke) were the dominant species. The composition of the hyperparasitoid community also differed significantly between the seedling and the flowering periods. The description of this parasitoid community-associated assemblage of aphids in cotton fields will facilitate the study of aphid-parasitoid interactions and promote the development of effective cotton aphid management strategies in Xinjiang

    Protective effects of methyl protodioscin against lipid disorders and liver injury in hyperlipidemic gerbils

    No full text
    Methyl protodioscin (MPD) is the main component of total diosgenin, which was reported to reduce cholesterol and triglyceride levels potentially. This study aimed to investigate the beneficial effects of MPD against lipid disorder in hyperlipidemic gerbils induced by a high-fat diet (HFD). Hyperlipidemia was induced in gerbils by feeding them with HFD for six weeks, and a daily oral dose of MPD solution (25 and 50 mg/kg/day) was administered. This study investigated blood lipid levels and hepatic lipid accumulation in hyperlipidemic gerbils. The potential mechanism of MPD was explored by detecting the expression level of genes, including SREBPs, ACC, FASN, HMGCR, PCSK9, and LDL-R. The results showed that MPD treatment decreased the body weight, the relative weight of the liver, blood lipid, and hepatic lipid levels of gerbils fed with HFD. The administration of MPD alleviates liver steatosis and injury in gerbils fed with an HFD. MPD treatment reduced the expression of HMGCR, increased the expression of LDL-R, and decreased the expression of PCSK9 for cholesterol reduction. Additionally, MPD treatment reduced the expression of hepatic ACC and FASN for triglycerides reduction. The underlying mechanisms for these effects are attributed to MPD-induced inhibition of protein expression of LXR, SREBP1, and SREBP2. This study demonstrates that MPD protects gerbils against lipid disorders and liver injury by suppressing hepatic SREBPs expression

    Developing an Effective Peptide-Based Vaccine for COVID-19: Preliminary Studies in Mice Models

    No full text
    Coronavirus disease 2019 (COVID-19) has caused massive health and economic disasters worldwide. Although several vaccines have effectively slowed the spread of the virus, their long-term protection and effectiveness against viral variants are still uncertain. To address these potential shortcomings, this study proposes a peptide-based vaccine to prevent COVID-19. A total of 15 B cell epitopes of the wild-type severe acute respiratory coronavirus 2 (SARS-CoV-2) spike (S) protein were selected, and their HLA affinities predicted in silico. Peptides were divided into two groups and tested in C57BL/6 mice with either QS21 or Al(OH)3 as the adjuvant. Our results demonstrated that the peptide-based vaccine stimulated high and durable antibody responses in mice, with the T and B cell responses differing based on the type of adjuvant employed. Using epitope mapping, we showed that our peptide-based vaccine produced antibody patterns similar to those in COVID-19 convalescent individuals. Moreover, plasma from vaccinated mice and recovered COVID-19 humans had the same neutralizing activity when tested with a pseudo particle assay. Our data indicate that this adjuvant peptide-based vaccine can generate sustainable and effective B and T cell responses. Thus, we believe that our peptide-based vaccine can be a safe and effective vaccine against COVID-19, particularly because of the flexibility of including new peptides to prevent emerging SARS-CoV-2 variants and avoiding unwanted autoimmune responses
    corecore