38 research outputs found

    Age-Related Changes of Myelin Basic Protein in Mouse and Human Auditory Nerve

    Get PDF
    Age-related hearing loss (presbyacusis) is the most common type of hearing impairment. One of the most consistent pathological changes seen in presbyacusis is the loss of spiral ganglion neurons (SGNs). Defining the cellular and molecular basis of SGN degeneration in the human inner ear is critical to gaining a better understanding of the pathophysiology of presbyacusis. However, information on age-related cellular and molecular alterations in the human spiral ganglion remains scant, owing to the very limited availably of human specimens suitable for high resolution morphological and molecular analysis. This study aimed at defining age-related alterations in the auditory nerve in human temporal bones and determining if immunostaining for myelin basic protein (MBP) can be used as an alternative approach to electron microscopy for evaluating myelin degeneration. For comparative purposes, we evaluated ultrastructural alternations and changes in MBP immunostaining in aging CBA/CaJ mice. We then examined 13 temporal bones from 10 human donors, including 4 adults aged 38–46 years (middle-aged group) and 6 adults aged 63–91 years (older group). Similar to the mouse, intense immunostaining of MBP was present throughout the auditory nerve of the middle-aged human donors. Significant declines in MBP immunoreactivity and losses of MBP+ auditory nerve fibers were observed in the spiral ganglia of both the older human and aged mouse ears. This study demonstrates that immunostaining for MBP in combination with confocal microscopy provides a sensitive, reliable, and efficient method for assessing alterations of myelin sheaths in the auditory nerve. The results also suggest that myelin degeneration may play a critical role in the SGN loss and the subsequent decline of the auditory nerve function in presbyacusis

    Thermal behavior of hydrochar from co-hydrothermal carbonization of swine manure and sawdust: effect of process water recirculation

    No full text
    Effect of process water recirculation during co-hydrothermal carbonization (co-HTC) of swine manure (SM) and sawdust (SD) on the thermal behavior of hydrochar was investigated in this study. The results showed that process water recirculation promoted the dehydration and decarboxylation reactions, and increased the mass and energy yields of hydrochar during co-HTC. The combustion behavior of hydrochar was changed by the recirculation process with decreased ignition temperature and increased burnout temperature. Additionally, the first process water recirculation decreased the average activation energy (E-a) value of the hydrochar from 156.46 and 154.16 kJ mol(-1) to 136.95 and 133.67 kJ mol(-1) by Flynn-Wall-Ozawa and Kissinger-Akahira-Sunose methods, respectively, and further recirculation had a slight effect on the E-a value. The thermodynamic parameter of entropy change verified that combustion reactivity of the hydrochar was enhanced by process water recirculation. The present study demonstrated that process water recirculation was feasible and environment-friendly for fuel production during co-HTC of SM and SD

    Sox10 expressing cells in the lateral wall of the aged mouse and human cochlea.

    No full text
    Age-related hearing loss (presbycusis) is a common human disorder, affecting one in three Americans aged 60 and over. Previous studies have shown that presbyacusis is associated with a loss of non-sensory cells in the cochlear lateral wall. Sox10 is a transcription factor crucial to the development and maintenance of neural crest-derived cells including some non-sensory cell types in the cochlea. Mutations of the Sox10 gene are known to cause various combinations of hearing loss and pigmentation defects in humans. This study investigated the potential relationship between Sox10 gene expression and pathological changes in the cochlear lateral wall of aged CBA/CaJ mice and human temporal bones from older donors. Cochlear tissues prepared from young adult (1-3 month-old) and aged (2-2.5 year-old) mice, and human temporal bone donors were examined using quantitative immunohistochemical analysis and transmission electron microscopy. Cells expressing Sox10 were present in the stria vascularis, outer sulcus and spiral prominence in mouse and human cochleas. The Sox10(+) cell types included marginal and intermediate cells and outer sulcus cells, including those that border the scala media and those extending into root processes (root cells) in the spiral ligament. Quantitative analysis of immunostaining revealed a significant decrease in the number of Sox10(+) marginal cells and outer sulcus cells in aged mice. Electron microscopic evaluation revealed degenerative alterations in the surviving Sox10(+) cells in aged mice. Strial marginal cells in human cochleas from donors aged 87 and older showed only weak immunostaining for Sox10. Decreases in Sox10 expression levels and a loss of Sox10(+) cells in both mouse and human aged ears suggests an important role of Sox10 in the maintenance of structural and functional integrity of the lateral wall. A loss of Sox10(+) cells may also be associated with a decline in the repair capabilities of non-sensory cells in the aged ear

    MEF2C Hypofunction in GABAergic Cells Alters Sociability and Prefrontal Cortex Inhibitory Synaptic Transmission in a Sex-Dependent Manner

    No full text
    Background: Heterozygous mutations or deletions of MEF2C cause a neurodevelopmental disorder termed MEF2C haploinsufficiency syndrome (MCHS), characterized by autism spectrum disorder and neurological symptoms. In mice, global Mef2c heterozygosity has produced multiple MCHS-like phenotypes. MEF2C is highly expressed in multiple cell types of the developing brain, including GABAergic (gamma-aminobutyric acidergic) inhibitory neurons, but the influence of MEF2C hypofunction in GABAergic neurons on MCHS-like phenotypes remains unclear. Methods: We employed GABAergic cell type–specific manipulations to study mouse Mef2c heterozygosity in a battery of MCHS-like behaviors. We also performed electroencephalography, single-cell transcriptomics, and patch-clamp electrophysiology and optogenetics to assess the impact of Mef2c haploinsufficiency on gene expression and prefrontal cortex microcircuits. Results: Mef2c heterozygosity in developing GABAergic cells produced female-specific deficits in social preference and altered approach-avoidance behavior. In female, but not male, mice, we observed that Mef2c heterozygosity in developing GABAergic cells produced 1) differentially expressed genes in multiple cell types, including parvalbumin-expressing GABAergic neurons, 2) baseline and social-related frontocortical network activity alterations, and 3) reductions in parvalbumin cell intrinsic excitability and inhibitory synaptic transmission onto deep-layer pyramidal neurons. Conclusions: MEF2C hypofunction in female, but not male, developing GABAergic cells is important for typical sociability and approach-avoidance behaviors and normal parvalbumin inhibitory neuron function in the prefrontal cortex of mice. While there is no apparent sex bias in autism spectrum disorder symptoms of MCHS, our findings suggest that GABAergic cell-specific dysfunction in females with MCHS may contribute disproportionately to sociability symptoms

    Age-related reduction of MBP<sup>+</sup> fibers and immunostaining for MBP in human ears.

    No full text
    <p><b>A–L; N–O:</b> A significant loss of MBP<sup>+</sup> fibers occurred with age in both the peripheral and central portions of the auditory nerve. MBP<sup>+</sup> nerve fibers are illustrated in peripheral (<b>A, B</b>) and central (<b>C, D</b>) portions of the auditory nerve in the ears taken from middle-aged (<b>A–D</b>) and old (<b>E–H</b>) donors. White boxes with associated letters in <b>M</b> illustrated the regions of the cochlea depicted in <b>A–H</b>. Counts of MBP<sup>+</sup> fibers in both peripheral (<b>I, J</b>) and central (<b>K, L</b>) projections revealed a statistically significant reduction in fiber density in older compared to middle aged human cochleas using an unpaired t-test (<b>*</b><i>p</i><0.05). <b>N, O:</b> A reduction in the intensity of MBP immunoreactivity was seen in many myelinated fibers of a 91-year-old donor (white arrowheads). Scala vestibuli, SV; Scala tympani, ST. Scale bar, 10 µm in <b>E</b> (applies to <b>A, E</b>); 12 µm in <b>H</b> (applies to <b>B–D</b>; <b>F–H</b>); 12 µm in <b>O</b> (applies to <b>N, O</b>).</p
    corecore