5,117 research outputs found

    Compact coalgebras, compact quantum groups and the positive antipode

    Get PDF
    In this article -that has also the intention to survey some known results in the theory of compact quantum groups using methods different from the standard and with a strong algebraic flavor- we consider compact o-coalgebras and Hopf algebras. In the case of a o-Hopf algebra we present a proof of the characterization of the compactness in terms of the existence of a positive definite integral, and use our methods to give an elementary proof of the uniqueness - up to conjugation by an automorphism of Hopf algebras- of the compact involution appearing in [4]. We study the basic properties of the positive square root of the antipode square that is a Hopf algebra automorphism that we call the positive antipode. We use it -as well as the unitary antipode and the Nakayama automorphism- in order to enhance our understanding of the antipode itself

    Short-Term Memory in Orthogonal Neural Networks

    Full text link
    We study the ability of linear recurrent networks obeying discrete time dynamics to store long temporal sequences that are retrievable from the instantaneous state of the network. We calculate this temporal memory capacity for both distributed shift register and random orthogonal connectivity matrices. We show that the memory capacity of these networks scales with system size.Comment: 4 pages, 4 figures, to be published in Phys. Rev. Let

    Swelling of particle-encapsulating random manifolds

    Full text link
    We study the statistical mechanics of a closed random manifold of fixed area and fluctuating volume, encapsulating a fixed number of noninteracting particles. Scaling analysis yields a unified description of such swollen manifolds, according to which the mean volume gradually increases with particle number, following a single scaling law. This is markedly different from the swelling under fixed pressure difference, where certain models exhibit criticality. We thereby indicate when the swelling due to encapsulated particles is thermodynamically inequivalent to that caused by fixed pressure. The general predictions are supported by Monte Carlo simulations of two particle-encapsulating model systems -- a two-dimensional self-avoiding ring and a three-dimensional self-avoiding fluid vesicle. In the former the particle-induced swelling is thermodynamically equivalent to the pressure-induced one whereas in the latter it is not.Comment: 8 pages, 6 figure

    Correlated dynamics of inclusions in a supported membrane

    Full text link
    The hydrodynamic theory of heterogeneous fluid membranes is extended to the case of a membrane adjacent to a solid substrate. We derive the coupling diffusion coefficients of pairs of membrane inclusions in the limit of large separation compared to the inclusion size. Two-dimensional compressive stresses in the membrane make the coupling coefficients decay asymptotically as 1/r21/r^2 with interparticle distance rr. For the common case, where the distance to the substrate is of sub-micron scale, we present expressions for the coupling between distant disklike inclusions, which are valid for arbitrary inclusion size. We calculate the effect of inclusions on the response of the membrane and the associated corrections to the coupling diffusion coefficients to leading order in the concentration of inclusions. While at short distances the response is modified as if the membrane were a two-dimensional suspension, the large-distance response is not renormalized by the inclusions.Comment: 15 page

    Cosmology from String Theory

    Full text link
    We explore the cosmological content of Salam-Sezgin six dimensional supergravity, and find a solution to the field equations in qualitative agreement with observation of distant supernovae, primordial nucleosynthesis abundances, and recent measurements of the cosmic microwave background. The carrier of the acceleration in the present de Sitter epoch is a quintessence field slowly rolling down its exponential potential. Intrinsic to this model is a second modulus which is automatically stabilized and acts as a source of cold dark matter with a mass proportional to an exponential function of the quintessence field (hence realizing VAMP models within a String context). However, any attempt to saturate the present cold dark matter component in this manner leads to unacceptable deviations from cosmological data -- a numerical study reveals that this source can account for up to about 7% of the total cold dark matter budget. We also show that (1) the model will support a de Sitter energy in agreement with observation at the expense of a miniscule breaking of supersymmetry in the compact space; (2) variations in the fine structure constant are controlled by the stabilized modulus and are negligible; (3) ``fifth''forces are carried by the stabilized modulus and are short range; (4) the long time behavior of the model in four dimensions is that of a Robertson-Walker universe with a constant expansion rate (w = -1/3). Finally, we present a String theory background by lifting our six dimensional cosmological solution to ten dimensions.Comment: Version to be published in Physical Review

    Disorder and Funneling Effects on Exciton Migration in Tree-Like Dendrimers

    Full text link
    The center-bound excitonic diffusion on dendrimers subjected to several types of non-homogeneous funneling potentials, is considered. We first study the mean-first passage time (MFPT) for diffusion in a linear potential with different types of correlated and uncorrelated random perturbations. Increasing the funneling force, there is a transition from a phase in which the MFPT grows exponentially with the number of generations gg, to one in which it does so linearly. Overall the disorder slows down the diffusion, but the effect is much more pronounced in the exponential compared to the linear phase. When the disorder gives rise to uncorrelated random forces there is, in addition, a transition as the temperature TT is lowered. This is a transition from a high-TT regime in which all paths contribute to the MFPT to a low-TT regime in which only a few of them do. We further explore the funneling within a realistic non-linear potential for extended dendrimers in which the dependence of the lowest excitonic energy level on the segment length was derived using the Time-Dependent Hatree-Fock approximation. Under this potential the MFPT grows initially linearly with gg but crosses-over, beyond a molecular-specific and TT-dependent optimal size, to an exponential increase. Finally we consider geometrical disorder in the form of a small concentration of long connections as in the {\it small world} model. Beyond a critical concentration of connections the MFPT decreases significantly and it changes to a power-law or to a logarithmic scaling with gg, depending on the strength of the funneling force.Comment: 13 pages, 9 figure

    Neutrino Cosmology after WMAP and LHC7

    Full text link
    The gauge-extended U(1)_C \times SU(2)_L \times U(1)_{I_R} \times U(1)_L model has the attractive property of elevating the two major global symmetries of the standard model (baryon number B and lepton number L) to local gauge symmetries. The U(1)_L symmetry prevents the generation of Majorana masses, leading to three superweakly interacting right-handed neutrinos. This also renders a B-L symmetry non-anomalous. We show that the superweak interactions of these Dirac states (through their coupling to the TeV-scale B-L gauge boson) permit right-handed neutrino decoupling just above the QCD phase transition: 175 MeV < T_{\nu_R}^{dec} < 250 MeV. In this transitional region, the residual temperature ratio between \nu_L and \nu_R generates extra relativistic degrees of freedom at BBN and at the CMB epochs. Consistency (within 1\sigma) with both WMAP 7-year data and the most recent estimate of the primordial ^4He mass fraction is achieved for 3 TeV < M_{B-L} < 6 TeV. The model is fully predictive, and can be confronted with dijet and dilepton data (or lack thereof) from LHC7 and, eventually, LHC14.Comment: References added; to be published in PR

    Excitonic Funneling in Extended Dendrimers with Non-Linear and Random Potentials

    Full text link
    The mean first passage time (MFPT) for photoexcitations diffusion in a funneling potential of artificial tree-like light-harvesting antennae (phenylacetylene dendrimers with generation-dependent segment lengths) is computed. Effects of the non-linearity of the realistic funneling potential and slow random solvent fluctuations considerably slow down the center-bound diffusion beyond a temperature-dependent optimal size. Diffusion on a disordered Cayley tree with a linear potential is investigated analytically. At low temperatures we predict a phase in which the MFPT is dominated by a few paths.Comment: 4 pages, 4 figures, To be published in Phys. Rev. Let

    Don't know, can't know: Embracing deeper uncertainties when analysing risks

    Get PDF
    This article is available open access through the publisher’s website at the link below. Copyright @ 2011 The Royal Society.Numerous types of uncertainty arise when using formal models in the analysis of risks. Uncertainty is best seen as a relation, allowing a clear separation of the object, source and ‘owner’ of the uncertainty, and we argue that all expressions of uncertainty are constructed from judgements based on possibly inadequate assumptions, and are therefore contingent. We consider a five-level structure for assessing and communicating uncertainties, distinguishing three within-model levels—event, parameter and model uncertainty—and two extra-model levels concerning acknowledged and unknown inadequacies in the modelling process, including possible disagreements about the framing of the problem. We consider the forms of expression of uncertainty within the five levels, providing numerous examples of the way in which inadequacies in understanding are handled, and examining criticisms of the attempts taken by the Intergovernmental Panel on Climate Change to separate the likelihood of events from the confidence in the science. Expressing our confidence in the adequacy of the modelling process requires an assessment of the quality of the underlying evidence, and we draw on a scale that is widely used within evidence-based medicine. We conclude that the contingent nature of risk-modelling needs to be explicitly acknowledged in advice given to policy-makers, and that unconditional expressions of uncertainty remain an aspiration

    Differential Response of Coral Symbiotic Dinoflagellates to Bacterial Toxins that Produce Bleaching in Stony Corals

    Get PDF
    Bleaching of corals and other organisms with symbiotic zooxanthellae is a worldwide phenomenon with increasing importance due to global warming scenarios. Bleaching has been historically related to changes in the environment, especially water temperature increase, that stress corals and provoke the release of zooxanthellae. The discovery of Vibrio shilonii, a bacterium causing bleaching under thermal stress in corals of the Mediterranean Sea has changed our thinking about the cause (or explanation) for bleaching of corals worldwide. During this study, we evaluated the effect of a proline rich toxin, extracted from Vibrio shilonii, on zooxanthellae obtained from: Oculina patagonica from the Mediterranean Sea, two species from the Gulf of Elait (Red Sea), four species from the Caribbean Sea, and five Symbiodinium species extracted from different hosts (corals, jellyfish, zoanthid, and anemones) from different parts of the world. Our results show a differential response of zooxanthellae to the toxin, which implies, that a number of coral species may be affected by this bacterium to different degrees
    • …
    corecore