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Abstract. In this article –that has also the intention to survey some
known results in the theory of compact quantum groups using methods
different from the standard and with a strong algebraic flavor– we con-
sider compact ◦-coalgebras and Hopf algebras. In the case of a ◦–Hopf
algebra we present a proof of the characterization of the compactness
in terms of the existence of a positive definite integral, and use our
methods to give an elementary proof of the uniqueness –up to conjuga-
tion by an automorphism of Hopf algebras– of the compact involution
appearing in [4]. We study the basic properties of the positive square
root of the antipode square that is a Hopf algebra automorphism that
we call the positive antipode. We use it –as well as the unitary antipode
and Nakayama automorphism– in order to enhance our understanding
of the antipode itself.

1 The author would like to thank Conycit-MEC, Uruguay.
2 The author would like to thank Csic-UDELAR, Conycit-MEC, Uruguay.
3 The author would like to thank PEDECIBA, MEC-Udelar, Uruguay.

193



194 Andrés Abella, Walter Ferrer Santos, and Mariana Haim

1. Introduction

The family of compact groups plays an essential role in the theory of
group representations. This is clearly illustrated in the pioneering work of
A. Hurwitz and I. Schur: see for example Hurwitz’s “landmark paper” [11]
(c.f. Borel’s [7, Chapter 2, Section 2]) or the later paper by I. Schur [19].

A specially illustrative example is the unitäre Beschränkung –later
called unitarian trick– that H. Weyl used in order to prove the complete
reducibility of the representations of a semisimple group –see [23, 24, 25]–.

Since the mid 1980’s it has been established as a paradigm that the group
objects in non commutative geometry, i.e. the so called quantum groups
are the –non necessarily commutative– Hopf algebras.

Thus, after the above notion of quantum group was introduced, it was
natural to expect the development of an adequate concept of compact quan-
tum group.

This concept was introduced in Woronowicz’s seminal work –see [27]–
where the basic structure was defined in terms of a ?–operation on a general
Hopf algebra.

Later, the main algebraic structure underlying the definition of compact
quantum group was introduced –and called a CQG algebra– where, follow-
ing the same spirit than in Woronowicz’s paper, there is also a compatible
?–operation that plays the central foundational role. See for example the
paper [3] and the later [8] with a more formal presentation. In book form,
the reference [12] has rather complete a treatment of compact quantum
groups and their representations.

In the present work we use the approach to the concept of compact quan-
tum group introduced in [1], [2], and [15], where instead of the ?–operation
the equivalent concept of a ◦–structure is taken as the fundamental notion.
This approach is more convenient for our purposes. In particular it allows
the early introduction of the basic concept of compact coalgebra.

In the following we present a brief description of the contents of this
paper.

In Section 2 we recall a few basic notations and well known results in
coalgebra and comodule theory that will be used throughout the paper.

In Section 3 we recall the definition of ◦–coalgebra and show that the
existence of a ◦–structure on a coalgebra C is intimately related with the
existence of the analog of a duality functor in the category of C–comodules.
Then we introduce the notion of compact ◦–coalgebra in terms of the ex-
istence of unitary inner products in the objects of the category of C–
comodules. In particular, this definition shows that compact ◦-coalgebras
are cosemisimple.
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In Section 4 we give different characterizations of the notion of compact
◦-coalgebras in terms of unitary inner products and also of positive definite
Fourier forms and present a structure theorem that refines the correspond-
ing well known result for cosemisimple coalgebras –these results appear in
Theorem 4.3–.

In Section 5 we specialize to the situation of Hopf algebras whose under-
lying coalgebra and algebra structures have a compatible ◦–operator. In
Theorem 5.5, we prove the following basic positivity result: if V and V ∗ ad-
mit unitary inner products, there exists a positive isomorphism between V
and VS2 –where VS2 denotes de C–space V with the structure corestricted
with the automorphism S2–.

In Section 6 we define in terms of a ◦–structure, the concept of com-
pact quantum group and present an intrinsic proof in Theorem 6.9 –see
also Theorem 6.7– of the characterization of the compactness in terms of
the positivity of the bilinear product defined from the integral –the Haar
measure in Woronowicz’s nomenclature–. This proof is based upon the ex-
istence –for every H–comodule V – of a positive isomorphism between V

and VS2 mentioned before.

Section 7 is dedicated to the presentation of an intrinsic and elementary
algebraic proof of a result due to Andruskiewitsch that appeared in [4], and
that guarantees the uniqueness up to Hopf algebra automorphisms, of the
compact involution, i,e., of the ◦–structure in the given Hopf algebra.

In Section 8 we begin the study of some of the basic properties of the
antipode in a compact quantum group. We show that for a compact quan-
tum group, there is a positive automorphism of H that we call the positive
antipode –denoted as S+– that when squared coincides with the automor-
phism S2. Then, we use some of the standard tools in coFrobenius Hopf
algebra theory –Radford’s formula, Nakayama automorphism, the modular
function, etc.– in order to describe some of the basic properties of S and
of S+. We show that S+ is given by conjugation by a positive multiplica-
tive functional β –Theorem 8.7 and Corollary 8.11 –. We show that the
Nakayama automorphism is a positive algebra automorphism and define its
postive square root P, that we write in terms of β. We compute explicitly
the adjoint of S and show that the antipode is a normal operator with re-
spect to the inner product given by the integral, if and only if the positive
antipode is the identity and this happens if and only if S2 = id –Theorem
8.15–. We also compute explicitly the so called unitary antipode in terms
of S, S+ and of the Nakayama automorphism.

We finish the paper with a short section –Section 9– where we illus-
trate the methods developed, in the case of the compact quantum group
SUµ(2,C). In particular we compute explicitly the positive antipode S+

and the unitary antipode U .
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2. Preliminaries and basic notations

In this section we fix the notations and recall a few basic definitions and
concepts in coalgebra theory. See [1, 13] and [22] for more details on some
of the needed prerequisites and [18, 21] for general background in Hopf
algebra theory.

All the objects are defined over C and the category of C–vector spaces
will be denoted sometimes by V. If V is a C–vector space and A : V → W is
a linear map, then Vc is the conjugate of V and Ac : Vc →Wc the conjugate
linear map. Moreover, V ∗

c will denote (V ∗)c.

For coalgebras and comodules we use Sweedler’s notation. The symbols:
MC and CM represent the categories of right and left C–comodules re-
spectively and MC

f and CMf respectively are the full categories of finite
dimensional objects.

Definition 2.1. Let V be a finite dimensional vector space and B =
{e1, · · · , en} a basis. Recall the definition of the coalgebra c(V ) = (V ∗ ⊗
V,∆, ε): ∆(α⊗v) =

∑
α⊗ei⊗e

i⊗v, and ε : V ∗⊗V → k is ε(α⊗v) = α(v)
–above B∗ = {e1, · · · , en} is the dual basis of B–. The space V is a right
c(V )–comodule via χ0 : V → V ⊗ c(V ), given by v 7→

∑
ei ⊗ ei ⊗ v. Then,

c(V ) is a simple coalgebra and (V, χ0) is an irreducible right c(V )–comodule
(see for example [1, Section 3]).

Observation 2.2. (1) It is equivalent to give a right C–comodule
(V, χ) ∈ MC

f and to give a morphism of coalgebras cχ : c(V ) → C.

The morphism of coalgebras is the map cχ(α ⊗ v) =
∑
α(v0)v1.

Notice that in the case that V is a not necessarily finite dimensional
C–comodule, we can still define the linear map cχ : V ∗⊗V → C but
the vector space V ∗ ⊗ V is not endowed with a natural coalgebra
structure but cχ(V

∗ ⊗ V ) = Coeff(V ) ⊂ C is a subcoalgebra of C,
called the subcoalgebra of coefficients of V . In that situation the
C–comodule structure of V is induced from a Coeff(V )–comodule

structure. In other words, χ : V → V ⊗ C can be split as V
χ
−→

V ⊗ Coeff(V ) ⊂ V ⊗ C. In this situation the relationship between
the C–comodule structure of V and the maps χ0 and cχ introduced
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respectively in Definition 2.1 and Observation 2.2 part (1), is given
by the commutativity of the diagram below.

V

χ
0

��

χ
// V ⊗ C

V ⊗ c(V )
id⊗cχ

// V ⊗ Coeff(V )

id⊗ inc

OO

(2) In the above notations, given (V, χ) ∈ MC
f , we define the matrix

T ∈ Mn(C), as T = (cχ(e
j⊗ei))1≤i,j≤n. The matricial coefficients of

the C–comodule V , i.e. the entries of T , are defined by the formulæ
χ(ej) =

∑
i ei⊗ tij . Clearly, ∆(tij) =

∑
k tik⊗ tkj ; ε(tij) = δij . It is

well known that V is irreducible if and only if the matrix coefficients
{tij} are linearly independent.

In the context of linear actions of groups, the algebra of coefficients is
usually called the algebra of representative functions.

We list a few results concerning the above construction. Most of the
proofs can be found in [1, Section 4].

Observation 2.3. (1) Assume that I ⊂ C is a right coideal with the
property that Coeff(I) ⊂ I. Then ∆(I) ⊂ I⊗Coeff(I) and applying
ε ⊗ id we deduce that I ⊂ Coeff(I). Hence I = Coeff(I) is a
subcoalgebra.

(2) If V ∈ MC is irreducible, then Coeff(V ) is a simple subcoalgebra
of C and conversely if C is a simple coalgebra, there exists an irre-
ducible C–comodule V such that C = Coeff(V ) ∼= c(V ). Moreover
if C is a simple and W is an arbitrary non zero C–comodule, then
Coeff(W ) = C.

(3) Let C be an arbitrary coalgebra and C1 = Coeff(V1), C2 =
Coeff(V2) ⊂ C be simple subcoalgebras with V1, V2 irreducible C-
comodules, then C1 = C2 if and only if V1

∼= V2 as C–comodules.
(4) If C can be decomposed into a sum of irreducible C–comodules:

C =
⊕

{Vρ : ρ ∈ R}, then an arbitrary C–comodule V , is isomor-
phic to Vρ for some ρ ∈ R and any simple subcoalgebra D ⊂ C is
of the form D = Coeff(Vρ) for some ρ ∈ R.

Observation 2.4. A hermitian form β : V ⊗Vc → C defined on V induces
a linear morphism ψβ : V → V ∗

c defined as ψβ(u)(v) = β(v, u).

Assume that V and V ∗ are finite dimensional and endowed with inner
products β : V ⊗ Vc → C and γ : V ∗ ⊗ V ∗

c → C. Next, consider the
corresponding isomorphisms ψβ : V → V ∗

c and ψγ : V ∗ → V ∗∗
c and the

linear map φ : V → V defined by the commutativity of the following
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diagram:

V

ψβ

��

φ
// V

jV
��

V ∗
c ψγc

// V ∗∗

where jV : V → V ∗∗ denotes the canonical isomorphism, i.e. φ is defined
by the equality: γ(ψβ(v), ψβ(u)) = β(φ(u), v), ∀u, v ∈ V .

Then β(φ(v), v) > 0, for all 0 6= v ∈ V , i.e. φ : V → V is β–positive
definite.

Some aspects of the theory of ◦–coalgebras, unitary comodules and com-
pactness –that will be treated later– can be viewed with profit in terms of
Fourier forms and Fourier products in the coalgebra. The theory of Fourier
forms and Fourier products for general coalgebras was developped in [9],
we recall here a few basic definitions, the fact that the basic field is C is
not relevant here.

Definition 2.5. (1) A Fourier form in C is a bilinear map ω : C ⊗
C → C with the property that for all c, d ∈ C,

∑
ω(c, d1)d2 =∑

c1ω(c2, d). The Fourier form is said to be normal if for all c ∈ C,∑
ω(c1, c2) = ε(c). The Fourier form is symmetric if ω(c, d) =

ω(d, c) for all c, d ∈ C.
(2) A Fourier product in C is a bilinear map ? : C ⊗ C → C with

the property that for all c, d ∈ C, ∆(c ? d) =
∑

(c ? d1) ⊗ d2 =∑
c1 ⊗ (c2 ? d).

(3) If H is a Hopf algebra and ϕ : H → C is a right integral1 on H

i.e. a linear map such that
∑
ϕ(x1)x2 = ϕ(x)1 for all x ∈ H,

then ωϕ(x, y) = ϕ(S(x)y) is a Fourier form –see [9]–. Moreover, the
integral ϕ is normal –i.e. it satisfies that ϕ(1) = 1– if and only if ωϕ
is a normal Fourier form. Conversely, if ω is a Fourier form, then
the linear map x 7→ ω(1, x) : H → C is a right integral on H.

Below we establish a bijective correspondence between Fourier forms and
Fourier products on a coalgebra C. Indeed: ω 7→ ?ω, ? 7→ ω?, where for all
c, d ∈ C,

c ?ω d =
∑

ω(c, d1)d2 =
∑

c1ω(c2, d) , ω?(c, d) = ε(c ? d) ,

1In a first version of this paper and also in some previous papers by the authors –see
for example [9]– the name cointegral was used for this kind of maps. We changed it
following the referee’s suggestion. The present name is more compatible with the usual
nomenclature on the subject.
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It is clear that the Fourier form ω is normal if and only if the associated
Fourier product satisfies the following condition:

∑
x1 ?ω x2 = x.

The following properties are easy to verify.

Observation 2.6. (1) If ?1 and ?2 are arbitrary Fourier products in
C, then x ?1 (y ?2 z) = (x ?1 y) ?2 z.

(2) If ? is a Fourier product in C and L,R are respectively a left and a
right coideal in C, then R ? L ⊆ R ∩L. Hence, if D and E are two
different simple subcoalgebras of C, then D ? E = 0 and therefore
ω?(D ⊗ E) = 0.

(3) If C is cosemisimple and ω : C ⊗ C → C is a right non degenerate
Fourier form, then it follows from the above that for every simple
subcoalgebra D ⊆ C, the restricted form ω : D ⊗ D → C is right
(and left –since D is finite dimensional–) non degenerate.

(4) If D is a finite dimensional coalgebra and ω, ? are a form and a
product associated to each other as above, then: ω : D ⊗ D → C
is right (and left) non degenerate if and only if ? has a neutral
element s ∈ D. Explicitely, s is the only element in D that verifies
ω(c, s) = ε(c) = ω(s, c),∀c ∈ D.

3. Compact ◦–coalgebras

If G is a compact topological group and µ is an invariant measure, a
standard tool in the representation theory of G consists in “unitarizing” all
the G–modules. Given an arbitrary inner product in a G–module V , by
integration we define on V a G–invariant inner product and in that manner
we can assume that the action of the group on V is given by isometries.

In order to generalize the theory of compact groups to general coalgebras,
it is natural to assume as the starting point of the abstract definition of
compactness of C, the existence of an inner product on every comodule
satisfying a condition of C–invariance –see more precisely Definition 3.9–.

This will lead immediately to the concept of compact ◦–coalgebra that
is presented in this section.

The notion of a ◦–structure in the context of Hopf algebras was originally
defined in [15], where the concept was presented in terms of a ?–structure
and of the antipode.

Later the definition of a ◦–structure in the more general set up of coal-
gebra theory appeared in [2] (see also [1] for a more recent and detailed
presentation).

The algebra dual to a ◦–coalgebra is a ?–algebra, where the operator ? is
the dualization of ◦. Many concepts and proofs in the realm of ◦–coalgebras
are counterparts of concepts and proofs for ?–algebras.
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Definition 3.1. (1) Assume that (C,∆, ε) is a coalgebra over the field
of complex numbers. A ◦–structure on C is a linear map ◦ : C → Cc
that is involutive and anticomultiplicative. The pair (C, ◦) is called
a ◦–coalgebra.

(2) If (C, ◦) and (D,♦) are two ◦–coalgebras, a morphism of
◦–coalgebras is a morphism of coalgebras f : C → D, satisfying the
additional condition that for all c ∈ C, f(c◦) = f(c)♦.

(3) A subcoalgebra D of a ◦–coalgebra satisfying D◦ = D is called a
◦–subcoalgebra.

In explicit terms and with respect to the comultiplication, the compat-
ibility condition for ◦ means that for all c ∈ C if ∆(c) =

∑
c1 ⊗ c2, then

∆(c◦) =
∑
c◦2 ⊗ c◦1.

Observation 3.2. It follows immediately from the definition above that
ε(c◦) = ε(c) for all c ∈ C. Hence viewing (Cc,∆c, εc) as a coalgebra, the
◦–structure is a morphism of coalgebras ◦ : (C,∆, ε) → (Cc,∆c, εc)

cop.

Example 3.3. If V is an arbitrary finite dimensional complex vector space
with basis B = {e1, · · · , en}, then the coalgebra c(V ) = V ∗ ⊗ V can be
equipped with a ◦–structure defined on the basis B as (ej ⊗ ei)

◦ = ei ⊗ ej .

The ◦–structure on the coalgebra C endows the category of right C–
comodules with an additional “duality functor” as presented in Definition
3.6. The reader should notice that we are not talking about duality in a
technical sense.

First we recall the following duality constructions that make sense in the
context of general coalgebras.

Definition 3.4. Let C be an arbitrary coalgebra and (V, χ) a right finite
dimensional C–comodule. The map χr : V ∗ → C ⊗ V ∗ defined by the
formula: χr(f) =

∑
f−1 ⊗ f0 if and only if

∑
f−1f0(v) =

∑
f(v0)v1,

is a left C–comodule structure on V ∗. The pair (V ∗, χr) is frequently
abbreviated as V r and called the right adjoint of V . In this manner we
have defined a contravariant functor (−)r : MC

f → CMf . Similarly we can

define (−)` : CMf → MC
f and V ` will be called the left adjoint of V .

Definition 3.5. If C is a ◦–coalgebra and (W,χ) a left C–comodule, then
the map χ◦ defined as χ◦ = sw(◦ ⊗ id)χc : Wc → Wc ⊗ C is a right
C–comodule structure on Wc, where sw stands for the usual switching
map. This correspondence can be extended to define a covariant functor
CM → MC .

Definition 3.6. Let C be a ◦–coalgebra. If (V, χ) ∈ MC
f , then the map

χr◦ = (χr)◦ : V ∗
c → V ∗

c ⊗ C is a right C–comodule structure on V ∗
c . In
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explicit terms, if χ(v) =
∑
v0 ⊗ v1 and χr◦(f) =

∑
f0 ⊗ f1 then

∑
f0(v)f1 =

∑
f (v0)v

◦
1 .

We call D the contravariant functor MC
f → MC

f defined on objects as

above, i.e. D(V, χ) = (V ∗
c , χ

r◦). If B = {e1, · · · , en} is a basis of V and
B∗ = {e1, · · · , en} is its dual basis in V ∗, then the matrix coefficients of χ
and χr◦ are related by

χ(ei) =
∑

j

ej ⊗ tji, χ
r◦

(
e
i
)

=
∑

j

e
j ⊗ t

◦
ij

Observation 3.7. In the situation above, it is clear that for a finite di-
mensional C–comodule V , we have that Coeff(D(V )) = Coeff(V )◦.

Next lemma follows immediately from the fact that ◦ is an involution.

Lemma 3.8. If C is a ◦–coalgebra, then D2 = (−)`r : MC
f → MC

f . �

In order to look at the adequate concept of representation for a ◦–
coalgebra we need the following definition.

Definition 3.9. (1) Let C be a ◦–coalgebra and V ∈ MC . A hermit-
ian form β : V ⊗ Vc → C is unitary or invariant if

∑
β(u0, v)u1 =∑

β(u, v0)v
◦
1 , for all u, v ∈ V . If moreover, β is an inner product,

then it is called a unitary structure on V .
(2) A pair (V, 〈 , 〉) consisting of a C–comodule V and a unitary struc-

ture on V is called a unitary C–comodule. Moreover, if (V, 〈 , 〉)
and (W, [ , ]) are unitary comodules, a morphism of comodules
f : V → W is said to be unitary if it is an isometry with re-
spect to 〈 , 〉 and [ , ]. Sometimes a unitary structure is called a
unitary inner product.

Example 3.10. Let V be a finite dimensional vector space and consider the
◦–coalgebra c(V ) of Example 3.3. Then, the inner product of V that makes
the given basis B orthonormal, is a unitary form in the c(V )–comodule V .

Lemma 3.11. Let C be a ◦–coalgebra, (V, χ) ∈ MC
f and let β : V ⊗Vc → C

be a hermitian form on V .

Then, the following assertions are equivalent:

(1) The form β is unitary.
(2) The map ψβ : V = (V, χ) → D(V ) = (V ∗

c , χ
r◦) –see Observation 2.4–

is a morphism in MC
f .

Corollary 3.12. If β is a unitary structure on the C–comodule V , then
Coeff(V ) ⊂ C is a ◦–subcoalgebra that is simple if V is irreducible.
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Proof. In this situation ψβ is an isomorphism, then the result follows from
Observations 2.3 and 3.7 from which we deduce that Coeff(V ) = Coeff(V ∗

c )
= Coeff(V )◦. �

Corollary 3.13. Assume that C is a ◦–coalgebra, that V is a C–comodule
and that β : V ⊗ Vc → C is a unitary structure on V . If Vλ and Vµ

are irreducible non isomorphic subcomodules of V , then Vλ and Vµ are β–
orthogonal.

Proof. Consider Cλ = Coeff(Vλ) ⊂ C and Cµ = Coeff(Vµ) ⊂ C, the simple
subcoalgebras of coefficients associated to Vλ and Vµ respectively. As Vλ
and Vµ are not isomorphic, then Cλ ∩ Cµ = {0} –see Observation 2.3–.
In this situation, for u ∈ Vλ and v ∈ Vµ, if we apply ε to the equality∑
β(u0, v)u1 =

∑
β(u, v0)v

◦
1 ∈ Cλ ∩ C

◦
µ = Cλ ∩ Cµ = {0}, we deduce that

β(u, v) = 0. �

In the presence of a unitary structure the comments appearing in Ob-
servation 2.2 can be refined.

Lemma 3.14. Assume that C is an arbitrary ◦–coalgebra and that (V, χ)
is a finite dimensional right C–comodule. Choose a basis B = {e1, · · · , en}
and define the matrix T = (tij)1≤i,j≤n by the formula χ(ei) =

∑
j ej ⊗ tji.

Then T ◦ = T t if and only if the inner product that makes the basis B
orthonormal, is a unitary structure.

Proof. First we observe that if the product is unitary, then the condition
T ◦ = T t is satisfied. The unitary condition

∑
〈u0, v〉u1 =

∑
〈u, v0〉v

◦
1 ap-

plied to a pair of basis vectors u = ek and v = ej yields directly the
equality t◦ki = tik, i.e., T ◦ = T t. Conversely, if this condition is satisfied,
the above reasoning can be reversed and one proves that the inner product
is unitary. �

Observation 3.15. If C is a ◦–coalgebra and (V, 〈 , 〉) is a unitary C–
comodule, it is clear from the definitions that if W ⊂ V is an arbitrary
C–subcomodule, then the orthogonal complement W⊥ of W is also a C–
subcomodule of V (see also [1, Corollary 5.16] for details). Hence a unitary
C–comodule is completely reducible.

Definition 3.16. If C is a ◦–coalgebra, we say that C is compact if every
right C–comodule admits a unitary structure as introduced in Definition
3.9.

Observation 3.17. (1) It follows from Observation 3.15 that a com-
pact coalgebra is cosemisimple.
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(2) If C is compact, and we consider it as a right C–comodule, then it
can be endowed with a unitary inner product that will satisfy the
following condition: for all c, d ∈ C,

∑
〈c1, d〉c2 =

∑
〈c, d1〉d

◦
2.

(3) In the situation above if 1 ∈ C is a group like element with the
property that 1◦ = 1, we can define a map ϕ : C → C, as ϕ(c) =
〈c, 1〉 ∈ C. It is clear that ϕ is a right integral on C with ϕ(1) =
1. Indeed,

∑
ϕ(c1)c2 =

∑
〈c1, 1〉c2 = 〈c, 1〉1◦ = ϕ(c)1. Moreover

ϕ(1) = 〈1, 1〉 > 0 because we are dealing with inner products.

4. Compactness, cosemisimplicity and Fourier forms

In the presence of a ◦–structure on C the existence of inner products can
be related with the theory of Fourier forms and some of the considerations
of the preceeding section can be refined.

Definition 4.1. Assume that C is a ◦–coalgebra, that ω is a Fourier form
for C and that ? is a Fourier product.

(1) We say that ω is positive if and only if ω(c◦, c) ≥ 0 for all c ∈ C. If
ω(c◦, c) > 0 whenever c 6= 0 we say that ω is positive definite.

(2) We say that ω is hermitian if for all c, d ∈ C, ω(c◦, d◦) = ω(d, c).
(3) We say that ? is positive if and only if ε(c◦ ? c) ≥ 0 for all c ∈ C. If

ε(c◦ ? c) > 0 whenever c 6= 0 we say that ? is positive definite.
(4) We say that ? is hermitian if for all c, d ∈ C, c◦ ? d◦ = (d ? c)◦.

It follows directly from the above definition that the Fourier form ω

is positive (positive definite, hermitian) if and only if the corresponding
Fourier product ?ω is positive (respectively positive definite, hermitian).

Observation 4.2. (1) In the case that C has a ◦–structure and also a
Fourier form ω, the map 〈 , 〉ω : C⊗C → C defined for all c, d ∈ C

as 〈c, d〉ω = ω(d◦, c) is a unitary sesquilinear form in C.
(2) Hence, in the situation of a ◦–coalgebra C, there is a bijective cor-

respondence between Fourier forms, Fourier products and unitary
sesquilinear forms on C and this correspondence is given by the
following rules: ω 7→ ?ω, ? 7→ 〈 , 〉? and 〈 , 〉 7→ ω〈 , 〉 where for all
c, d ∈ C, c ?ω d =

∑
ω(c, d1)d2 =

∑
c1ω(c2, d), 〈c, d〉? = ε(d◦ ? c)

and ω〈 , 〉(c, d) = 〈d, c◦〉.
(3) The direct expression of the Fourier product in terms of the corre-

sponding unitary sesquilinear form is the following: for all c, d ∈ C:
c ? d =

∑
〈d1, c

◦〉d2 =
∑
c1〈d, c

◦
2〉.

(4) The Fourier form ω is symmetric if and only if the associated
sesquilinear form satisfies the following condition: 〈c◦, d◦〉 = 〈d, c〉.
In case that the sesquilinear form is hermitian, the symmetry of ω
is equivalent to the condition 〈c◦, d◦〉 = 〈c, d〉.
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(5) The correspondence considered above between Fourier forms and
unitary sesquilinear forms in C , preserves positivity and hermi-
tianity. Hence, in C there is a bijective correspondence between
positive definite hermitian Fourier forms and unitary inner prod-
ucts.

The theorem below refines for the case of compact coalgebras, a well
known result on the structure of cosemisimple coalgebras.

Theorem 4.3. Let C be a ◦–coalgebra. The following properties are equiv-
alent.

(1) The coalgebra C is compact.
(2) The coalgebra C viewed as a right C–comodule admits a unitary

inner product.
(3) The coalgebra C admits a Fourier form that is positive definite and

hermitian.
(4) The coalgebra C admits a Fourier product that is positive definite

and hermitian.
(5) The coalgebra C can be decomposed as C =

⊕
ρ∈Ĉ Cρ –for some

set of subindexes that we call Ĉ–, where each Cρ ⊂ C is a simple
◦–subcoalgebra. Moreover, each Cρ admits a basis of elements {tρij :

1 ≤ i, j ≤ nρ} such that for all 1 ≤ i, j ≤ nρ, ∆(tρij) =
∑

k t
ρ
ik ⊗ t

ρ
kj

and tρij
◦

= t
ρ
ji.

Proof. It is clear that condition (1) implies condition (2) and the proof that
(2), (3) and (4) are equivalent is the content of Observation 4.2.

To prove that (2) implies (5) we proceed as follows. First recall that C
is cosemisimple (see Observation 3.17) and write C =

⊕
ρ∈Ĉ

Cρ with Cρ a

simple subcoalgebra of C. It follows from Corollary 3.12 that each Cρ is a

◦–coalgebra and from Observation 2.3 that the family of all Cρ for ρ ∈ Ĉ

consists of all simple subcoalgebras of C.

Hence, we have finished the proof of first part of (5). Now, call Vρ an
irreducible right coideal with the property that Coeff(Vρ) = Cρ and take a
basis Bρ = {eρ1, · · · , e

ρ
nρ} of Vρ that is orthogonal with respect to the given

unitary inner product in C, and consider the basis {tρij : 1 ≤ i, j ≤ nρ} of

Cρ defined by the formulæ: ∆(eρi ) =
∑

j e
ρ
j ⊗ t

ρ
ji –see Observation 2.2–. In

accordance with Lemma 3.14, the elements {tρij : 1 ≤ i, j ≤ nρ} satisfy the

required properties: ∆(tρij) =
∑

k t
ρ
ik ⊗ t

ρ
kj and tρij

◦
= t

ρ
ji.

Now, assuming condition (5) we prove condition (1) as follows. It is
well known, see for example [1, Theorem 4.1], that being C the direct sum
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of simple subcoalgebras, the category of right C–comodules is semisimple.
We want to prove that any C–comodule is unitary and from the above it
follows that it is enough to prove that irreducible C–comodules are unitary.
Indeed, in order to construct a unitary product in an arbitrary C–comodule,
we define the product in its irreducible components and then extend it by
forcing irreducible non isomorphic components to be orthogonal.

If V is an irreducible C–comodule, then Coeff(V ) is of the form Cρ for

some ρ ∈ Ĉ and then V ⊂ Cρ for some ρ. We define the inner product
〈 , 〉 in Cρ setting 〈tρik, t

ρ
j`〉 = δijδk` and then by restriction we define it in

V . In particular it is clear that the inner product thus defined is unitary.

�

Notice that condition (4) above, guarantees that each Cρ as a ◦–coalgebra
is isomorphic to (Mn(C), (−)∗), that is the usual matrix coalgebra with the
◦–operation given by the adjoint operator.

Observation 4.4. It is important to remark that the inner product con-
structed along the proof of part (5) of the above theorem, satisfies the
following additional condition:

〈c◦, d◦〉 = 〈c, d〉, ∀c, d ∈ C. (1)

Equivalently –see Observation 4.2, (4)– the corresponding associated
Fourier form is symmetric.

5. The case of Hopf algebras

From now on we assume that our basic ◦–coalgebra H has the additional
structure of a Hopf algebra with a product that is compatible with the ◦–
structure.

Definition 5.1. Assume that H is a Hopf algebra and that ◦ is a ◦–
structure on (H,∆, ε). We say that the pair (H, ◦) is a ◦–Hopf algebra if
(xy)◦ = x◦y◦, for all x, y ∈ H.

In this situation, –see [15]– the following properties are satisfied: 10 = 1,
and S ◦ S◦ = id. In particular, it is clear that ◦ : H → Hc is an algebra
automorphism and that the antipode of H is an invertible linear map with
inverse S−1 = ◦S◦.

Next, we compare this definition with the equivalent concept of ?–Hopf
algebra.

Recall that a ?–Hopf algebra, is a Hopf algebra H defined over C and
equipped with a conjugate linear involution ? : H → H, such that H: it is
a ?–algebra, and the maps ∆ : H → H ⊗H and ε are ?–homomorphisms.
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The concept of ?–Hopf algebra and of ◦–Hopf algebra are equivalent as
for a given ?–structure the map S? is obviously a ◦–structure on H.

Next we collect for future reference some of the basic properties of Fourier
forms, products and integrals in the case of a Hopf algebra.

Observation 5.2. The considerations that follow are consequence of Ob-
servations 4.2. If H is a ◦–Hopf algebra and ϕ is a right integral on H,
then

〈x, y〉ϕ = ϕ (S(y◦)x) , ∀x, y ∈ H

defines a unitary sesquilinear form 〈 , 〉ϕ : H ⊗Hc → C. Moreover,

(1) 〈 , 〉ϕ is hermitian if and only if ϕ (x◦) = ϕ (S(x)), ∀x ∈ H,
(2) 〈 , 〉ϕ is positive definite if and only if ϕ (S(x◦)x) > 0, ∀x 6= 0 ∈ H.

We prove one of the implications of part (1), the rest of the proof is direct.

ϕ (S(x◦)y) =ϕ ((S(x◦)◦y◦)◦) =

ϕ

((
S
−1(x)y◦

)◦)
=ϕ (S (S−1(x)y◦)) = ϕ (S (y◦)x).

Observation 5.3. (1) In the situation of a Hopf algebra H, if (W,χ) ∈
HM and χS = sw(S ⊗ id)χ : W → W ⊗H, then (W,χS) ∈ MH .

We can consider also the standard duality functor
(V, χ) 7→ (V ∗, χrS) : MH

f → MH
f , that defines a duality in the

category MH
f . In explicit terms χrS(f) =

∑
f0 ⊗ f1, if and only if∑

f0(v)f1 =
∑
f(v0)S(v1) where χ(v) =

∑
v0 ⊗ v1.

(2) It follows directly from the above formula that the cannonical map
jV : (V,

(
id ⊗ S2

)
χ) → (V ∗∗, χrSrS) is a morphism ofH–comodules.

(3) In the situation above, it is clear that Coeff
(
V ∗, χrS

)
=

S(Coeff(V, χ)). It is also interesting at this point to recall that
Coeff(V ∗

c , χ
r◦) = Coeff(V, χ)◦ –see Observation 3.7–.

Lemma 5.4. Assume that H is a ◦–Hopf algebra and let (V, χ) be a finite
dimensional right H–comodule that admits an unitary inner product γ :
V ∗⊗V ∗

c → C. Then the map ψγc : (V ∗
c , χ

r◦) → (V ∗∗, χrSrS) is a morphism
of H–comodules.

Proof. In the following proof we call χr◦(f) =
∑
f(0) ⊗ f(1) and χrS(f) =∑

f0 ⊗ f1.
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We want to prove that the following diagram is commutative

V ∗
c

χr◦

��

ψγc // V ∗∗

χrSrS

��

V ∗
c ⊗H

ψγc⊗id
// V ∗∗ ⊗H

(2)

As jV :
(
V,

(
id ⊗ S2

)
χ
)
→

(
V ∗∗, χrSrS

)
is a morphism –see Observation

5.3– the commutativity of (2) is equivalent to the commutativity of:

V ∗
c

χr◦

��

ψγc // V ∗∗
j−1

V // V

(id⊗S2)χ
��

V ∗
c ⊗H

ψγc⊗id
// V ∗∗ ⊗H

j−1

V
⊗id

// V ⊗H

Let be f ∈ V ∗
c and call j−1

V (ψγc(f)) = v. Then

γ(h, f) = h(v), ∀h ∈ V ∗
. (3)

We have to show that∑
ψγc

(
f(0)

)
⊗ f(1) =

∑
jV (v0) ⊗ S

2(v1).

After evaluation at an arbitrary g ∈ V ∗ and using (3) and Observation 5.3,
(1); the above equation becomes:

∑
γ

(
g, f(0)

)
f(1) = S

(∑
γ(g0, f) g1

)
. (4)

Let us consider a fixed g ∈ V ∗ and represent it by an unique w ∈ V such
that γ(g,−) = jV (w), i.e.:

γ(g, h) = h(w), ∀h ∈ V
∗
. (5)

Hence using the characterization of χr◦ given in Definition 3.6, equation
(4) becomes: ∑

f(w0)w
◦
1 = S

(∑
γ(g0, f) g1

)
∈ H. (6)

Next observe that the condition of unitarity of γ,
∑
γ (g, f0) f

◦
1 =∑

γ (g0, f) g1, expressed in terms of w instead of g becomes:∑
f0(w) f◦1 =

∑
γ (g0, f) g1, and after applying the antipode S we have:

S ◦ (
∑
f0(w) f1) = S (

∑
γ (g0, f) g1). Going back to equation (4) we have:
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S

(∑
γ (g0, f) g1

)
= S ◦

(∑
f0(w) f1

)
= ◦S−1

(∑
f0(w) f1

)

= ◦S−1
(∑

f(w0)S(w1)
)

=
∑

f(w0)w
◦
1.

�

The following theorem will be of crucial importance later in the treatment
of compact involutions. Notice that this result is related to [4, Theorem
1.7] and to [14, Theorem 3.3].

Theorem 5.5. Assume that H is a ◦–Hopf algebra and let (V, χ) be a
finite dimensional right H–comodule with the property that V as well as V ∗

admit unitary inner products. Then there is a positive definite isomorphism
of comodules between (V, χ) and

(
V,

(
id⊗S2

)
χ
)
.

Proof. We denote the inner products as β : V ⊗Vc → C and γ : V ∗⊗V ∗
c →

C and call ψβ : V → V ∗
c and ψγ : V ∗ → V ∗∗

c the corresponding linear
isomorphisms.

The Lemma 3.11 and Observation 5.3 guarantee that the maps ψβ :

(V, χ) → (V ∗
c , χ

r◦) and jV :
(
V,

(
id ⊗ S2

)
χ
)
→

(
V ∗∗, χrSrS

)
are morphisms

of H–comodules. Moreover, in accordance with Observation 2.4, the map φ
defined by the diagram below is bijective and positive definite with respect
to the inner product β of V

V

ψβ

��

φ
// V

jV
��

V ∗
c ψγc

// V ∗∗.

(7)

We prove that the map φ : (V, χ) →
(
V,

(
id⊗S2

)
χ
)

is a morphism of
H–comodules.
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Consider the diagram that follows:

V
φ

//

χ

��

ψβ
%%LLLLLLLLLLLL V

(id⊗S2)χ

��

jV

xxrrrrrrrrrrrr

V ∗
c

χr◦

��

ψγc // V ∗∗

χrSrS

��

V ∗
c ⊗H

ψγc⊗id
// V ∗∗ ⊗H

V ⊗H
φ⊗id

//

ψβ⊗id

99ssssssssss
V ⊗H

jV ⊗id
ffLLLLLLLLLL

Of the four trapezoids that appear in the diagram, the upper and lower
are commutative by (7); the left and right because ψβ : (V, χ) → (V ∗

c , χ
r◦)

and jV :
(
V,

(
id ⊗ S2

)
χ
)
→

(
V ∗∗, χrSrS

)
are morphisms of H–comodules,

respectively. As the square in the center is commutative by the above
Lemma 5.4, we conclude that the exterior rectangle is commutative, i.e.
that φ : (V, χ) →

(
V,

(
id⊗S2

)
χ
)

is an H-comodule map. �

6. Compact Quantum Groups

In this section we review some of the basic definitions related to the
concept of compact quantum group. See [27] for the original definition and
also the papers cited in the Introduction for the early development of the
subject.

Definition 6.1. [1, Definition 7.1, Proposition 7.5] Assume that
(H,∆, ε, µ, 1, S, ◦) is a ◦–Hopf algebra. We say thatH is a compact quantum
group if (H,∆, ε, ◦) is a compact ◦–coalgebra.

In other words, a compact quantum group is a ◦–Hopf algebra with
the additional property that all the H–comodules can be endowed with a
unitary innner product.

Recall that in the situation of the equivalent set up of ?–Hopf algebras
–see for example [13]–, an inner product in an H–comodule V is called
unitary if it satisfies the following additional condition: for all v,w ∈ V

we have that
∑

〈v0, w0〉w
?
1v1 = 〈v,w〉1. If we define ◦ = ?S this unitary

condition is equivalent to the one appearing in Definition 3.9. Now, the
definition of compact quantum group in terms of a ? operation is that of a
?–Hopf algebra with the property that all theH–comodules admit a unitary
inner product. Hence the definition of compact quantum group apperaring
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for example in [3], [4] or [13] in terms of a ?–structure on H, is equivalent
to the one we presented above.

As we mentioned before, the above Definition 6.1 of compact quantum
group –or the equivalent concept in terms of a ?–operation– is the algebraic
counterpart of the original definition by Woronowicz, that is obtained from
the one above by a process of “completion”. We refer the reader to [3,
Proposition 1.4], [10, Chapter 2, Section 4] or [8] for the precise description
of this relationship.

We recall some results concerning cosemisimple Hopf algebras and then
look in the case of ◦–Hopf algebras at the behavior of the integral in relation
to the ◦–operator.

Observation 6.2. (1) Suppose that H is a cosemisimple Hopf algebra.
We can consider C as a right –or left– H–comodule with the trivial
structure given by the unit. In Observation 2.3 we noticed that
we can write H =

⊕
ρ∈Ĥ Hρ where Hρ is the family of all simple

subcoalgebras of H. In this situation we call ρ0 the element in Ĥ,
with the property that Hρ0 = C. Let ϕ : H → C be the projection
from H onto the component Hρ0 . It is clear that ϕ is a morphism
of right and left comodules and this implies that it is a right and
left normal integral on H.

(2) In particular, the antipode S permutes the simple subcoalgebras

Hρ for ρ ∈ Ĥ and leaves Hρ0 = C fixed.
(3) In this situation if ϕ : H → C is the normal –right and left– integral

on H, we can consider in H the Fourier product ?ϕ and the normal
Fourier form ωϕ induced by ϕ –see Observation 5.2–.

x ?ϕ y =
∑

ϕ(S(x)y1)y2 =
∑

x1ϕ(S(x2)y), ∀x, y ∈ H.

ωϕ(x, y) = ϕ(S(x)y).

The Fourier form considered above is left and right non degener-
ate and satisfies:

ωϕ (x, y) = ωϕ

(
y, S

2(x)
)
, ∀x, y ∈ Hρ.

See for example [20], for the non degeneracy of the form.
(4) Moreover, in the case of a ◦–Hopf algebra, the map ◦ : H → H

leaves invariant all the Hρ, including Hρ0–see Lemma 3.11–. Hence

it follows that ϕ ◦ = ϕ, i.e., ϕ(x◦) = ϕ(x) for all x ∈ H.
(5) The bilinear map 〈 , 〉ϕ ,〈x, y〉ϕ = ϕ(S(y◦)x), for all x, y ∈ H, is

hermitian, non degenerate and unitary. The hermitianity is equiv-
alent to the property that ϕ(x◦) = ϕ(S(x)) –see Observation 5.2–
that is a consequence of the properties (1) and (4) above.
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Observation 6.3. (1) It follows from Theorem 5.5 that for an arbi-
trary simple coalgebra C ⊂ H of the compact quantum group H,
we have that S2(C) = C. Indeed, in accordance with the mentioned
theorem, if V is a finite dimensional H–comodule, there is an iso-
morphism of H–comodules ϕ : (V, χ) → (V, (id⊗S2)χ). Hence,
Coeff(V ) = S2(Coeff(V )) and taking V an irreducible comodule
that has C as coalgebra of coefficients, we deduce that C = S2(C).
Notice that this result is valid for any simple subcoalgebra C of a
Hopf algebra –not necessarily with a ◦–structure– and was proved
by Larson in [14][Thm. 3.3].

(2) For future reference we write down the following formula, valid in
our context for all x, y ∈ H

∑
x1〈x2, y〉ϕ =

∑
S

2(y◦1)〈x, y2〉ϕ (8)

Explicitly, we need to show that:∑
x1ϕ(S(y◦)x2) =

∑
S2(y◦1)ϕ(S(y◦2)x), that by a change of vari-

ables becomes:
∑
x1ϕ(yx2) =

∑
S(y1)ϕ(y2x). This last equality

can be proved directly using the fact that ϕ is an integral –see [9]–.

Let H be a compact quantum group, next we prove that the non degen-
erate unitary form associated to the integral –that is denoted as 〈 , 〉ϕ–
and given explicitly as 〈x, y〉 = ϕ(S(y◦)x) is in fact an inner product. This
is the content of Theorem 6.7.

In order to prove this positivity result we will use the unitary inner
product whose existence was established along the proof of Theorem 4.3.
This product will be denoted as 〈 , 〉 and it satisfies the equation 〈x◦, y◦〉 =

〈x, y〉 –see Observation 4.4, (1)–.

As the Fourier forms associated to 〈 , 〉ϕ and 〈 , 〉 are unitary, the sub-
coalgebras Hρ are orthogonal with respect to both. The mentioned posi-
tivity result in H will be deduced of the corresponding result for each Hρ.
Explicitly the Fourier products ? and ?ϕ associated respectively with 〈 , 〉
and 〈 , 〉ϕ are given as:

x ? y =
∑

〈y1, x
◦〉 y2 =

∑
x1 〈y, x

◦
2〉 ,

x ?ϕ y =
∑

〈y1, x
◦〉ϕ y2 =

∑
x1 〈y, x

◦
2〉ϕ =

∑
ϕ(S(x)y1)y2 =

=
∑

x1ϕ(S(x2)y).

Next Lemmas 6.4, 6.5 are preparatory for the proof ot the positivity result
mentioned above.

Lemma 6.4. Let H be a compact quantum group and let Hρ be one of
its simple components as before. If Hρ =

⊕
aRa is the decomposition
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of Hρ into irreducible right coideals (that are pairwise 〈 , 〉–orthogonal in
accordance with Corollary 3.13), then:

(1) Hρ =
⊕

a(Ra)
◦ is also a decomposition of Hρ into pairwise orthog-

onal subspaces.
(2) The element sρ ∈ Hρ, neutral for the restriction of ? to Hρ, is

◦–stable, i.e., sρ = s◦ρ.
(3) If we write sρ =

∑
a sa, with sa ∈ Ra then, for all x ∈ Ra, x = sa?x

and if b 6= a, then sb ? x = 0. In particular sa 6= 0, for all a.

Proof. (1) The properties of this decomposition can be easily deduced from
the fact that Ra is orthogonal to Rb when a 6= b –see Corollary 3.13–(we

are also using that for x, y ∈ Hρ, 〈x
◦ , y◦〉 = 〈x , y〉, c.f. Observation 4.4).

(2) The existence of sρ follows from Observation 2.6. We have that:

s◦ρ = s◦ρ ? sρ =
(
s◦ρ ? sρ

)◦
=

(
s◦ρ

)◦
= sρ –see Observation 4.2–.

(3) From the equality: x = sρ?x =
∑

b(sb?x) and the fact that sb?x ∈ Rb
for all b –see Observation 2.6, we deduce our result. �

Lemma 6.5. Let H be a compact quantum group, let Hρ be one of its
simple components and let Hρ =

⊕
aRa be the decomposition of the simple

subcoalgebra Hρ into irreducible right coideals. Then, for each a we call
Aa : Ra → Ra the linear map defined by the equality:

Aa(x) = sa ?ϕ S
2(x), ∀x ∈ Ra.

Then:

(1) For all x, y ∈ Ra, we have

〈y◦, x◦〉ϕ = 〈Aa(x), y〉. (9)

(2) The map Aa is a positive operator with respect to the inner product
〈 , 〉.

Proof. (1) To prove the equality (9), we take x, y ∈ Ra and deduce that:

〈y◦, x◦〉ϕ = ε (x ?ϕ y
◦) = ε

(
y
◦
?ϕ S

2(x)
)

= ε
(
y
◦
? sρ ?ϕ S

2(x)
)

=
〈
sρ ?ϕ S

2(x), y
〉

=
∑

b

〈sb ?ϕ S
2(x), y〉 = 〈Aa(x), y〉.

The second in the chain of equalities above comes from the fact that:

ε (x ?ϕ y
◦) = ωϕ(x , y

◦) = ωϕ(y◦ , S2(x)) = ε
(
y
◦
?ϕ S

2(x)
)
,

–see Observation 6.2 part (3)–.
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(2) The map Aa : (Ra, (id ⊗ S2)∆) → (Ra,∆) is an H-comodule map.
Indeed,

∑
Aa(x1) ⊗ S

2(x2) =
∑

sa ?ϕ S
2(x1) ⊗ S

2(x2) =

=
∑

sa ?ϕ S
2(x)1 ⊗ S

2(x)2 = (see Def. 2.5) =

= ∆
(
sa ?ϕ S

2(x)
)

= ∆(Aa(x)).

From Theorem 5.5 and Schur’s Lemma we deduce that there is a complex
scalar γa and a 〈 , 〉–positive operator Pa on Ra with the property that
Aa = γaPa. Let Ba = {e1, e2, · · · , en} be a 〈 , 〉–orthonormal basis of Ra.
If we write ∆(sa) =

∑
i ei ⊗ hi, then
∑

i

ei〈ej , h
◦
i 〉 = sa ? ej = ej .

so we deduce 〈ej , h
◦
i 〉 = δi,j and therefore hi = e◦i . Then, ∆(sa) =

∑
i ei⊗e

◦
i

and –see Observation 2.6–
∑

i ei ?ϕ e
◦
i = sa. Applying ε to this last equality

we deduce that:
∑

i〈e
◦
i , e

◦
i 〉ϕ = ε(sa).

The positivity of γa follows from the following computation:

γa

∑

i

〈Pa(ei), ei〉 =
∑

i

〈Aa(ei), ei〉 =
∑

i

〈e◦i , e
◦
i 〉ϕ = ε(sa) =

= ε(sρ ? sa) =〈sa, s
◦
ρ〉 = 〈sa, sρ〉 = 〈sa, sa〉 > 0.

Hence γa is a strictly positive real number and thus Aa is a positive oper-
ator. �

Observation 6.6. In particular for all x ∈ R◦
a,

〈x, x〉ϕ = 〈Aa(x
◦), x◦〉. (10)

Theorem 6.7. If H is a compact quantum group and ϕ : H → C is
the associated normal integral, then the hermitian form 〈 , 〉ϕ is positive
definite.

Proof. As we proved in Theorem 4.3 there is a decomposition
H =

⊕
ρ∈Ĥ

Hρ, where Hρ are non isomorphic simple subcoalgebras that

are also ◦–stable and 〈 , 〉ϕ–orthogonal. For each ρ ∈ Ĥ we have a decom-
position Hρ =

⊕
aRa, into irreducible right coideals that are all isomorphic

–see Lemma 6.4–. Then, Hρ =
⊕

aR
◦
a and we claim that the left coideals

R◦
a are 〈 , 〉ϕ–orthogonal.

As Ra and R◦
b are respectively right and left coideals, from Observation

2.6 we deduce that Ra ? R
◦
b ⊂ Ra ∩ R

◦
b . Conversely, if x ∈ Ra ∩ R

◦
b , then

x = sa ? x ∈ Ra ? R
◦
b and we deduce that Ra ? R

◦
b = Ra ∩R

◦
b .
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Applying ε the the above equality we obtain:

ε (Ra ∩R
◦
b) = ε (Ra ? R

◦
b ) = 〈R◦

b , R
◦
a〉 = 〈Rb, Ra〉 = 0,

where we used above that for all x, y ∈ H: 〈x◦, y◦〉 = 〈x, y〉 –see Observation
4.4, (1)–. Now, if x ∈ R◦

b and y ∈ R◦
a, then y◦ ?ϕ x ∈ Ra ∩ R◦

b and
〈x, y〉ϕ = ε(y◦ ?ϕ x) ∈ ε(Ra ∩R

◦
b) = {0}.

Once that the above 〈 , 〉ϕ–orthogonality is established, it is enough to
show that 〈x, x〉ϕ > 0, for all a and ∀x ∈ R◦

a, x 6= 0, and this is exactly the
content of Lemma 6.5 –see also Observation 6.6–. �

A proof in matricial terms of the above theorem, appears in [13, Theorem
2.8] –see also the previous paper [3]–.

Corollary 6.8. If H is a compact quantum group, then the automorphism
S2 : H → H is positive definite with respect to the inner product defined by
the integral ϕ.

Proof. The result follows from the equalities: 〈S2(x), x〉ϕ = ϕ(S(x◦)S2(x))
= ϕ(S(x)x◦) = 〈x◦, x◦〉ϕ. �

We summarize the above results in the following theorem (see [4, Propo-
sition 2.4]).

Theorem 6.9. A ◦–Hopf algebra H is a compact quantum group if and
only if it is cosemisimple and the normal integral ϕ : H → C is positive
definite in the sense that ϕ(S(x◦)x) > 0 for all 0 6= x ∈ H.

7. The conjugacy of compact involutions

In this section we present a detailed proof –using the methods introduced
above– of a result that appeared in [4, Theorem 2.6]: if a cosemisimple Hopf
algebra has two different compact ◦–structures, then they are conjugate by
a positive Hopf algebra automorphism.

The proof is self–contained and should be thought as an expansion and
elaboration of the one appearing in [4]. In the same manner than the
original proof, ours is based in a few simple facts about positive linear
transformations on finite dimensional complex vector spaces –and locally
finite algebras– equipped with an inner product.

We recall some of the needed elementary results below.

Observation 7.1. Let V be a vector space equipped with an inner product
[ , ] and N : V → V be a positive linear transformation. Assume moreover
that V is N–locally finite in the sense that V is the direct sum of N–
stable finite dimensional spaces. It is well known that if we work on the
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finite dimensional N–stable pieces of V , we can find positive real numbers
λi : i = 1, · · · , k and orthogonal projections Ei : i = 1, · · · , k such that
N = λ1E1 ⊕ · · · ⊕ λkEk. The operator P = (λ1)

1/2E1 ⊕ · · · ⊕ (λk)
1/2Ek

is the only positive operator with respect to [ , ] satisfying that P 2 = N .
The inverses of N and P are also positive operators with respect to [ , ].
All this can be globalized to all of V in the obvious manner.

Moreover, if there exists a linear involution σ : V → V such that σN =
N−1σ, then σP = P−1σ, and this can be proved locally. In that situation,
if λ is an eigenvalue of N and Eλ is the corresponding eigenspace, then
from the equality σNσ = N−1 we deduce that σ(Eλ) = Eλ−1 . Then,

Pσ|Eλ
= (

√
λ)−1σ|Eλ

and thus, for y ∈ Eλ, σPσy = (
√
λ)−1y = P−1y.

Observation 7.2. Here –for later use– we present two applications of the
above construction, one to algebras and the other to simple coalgebras.

(1) Assume that additionally to the situation above we have that V =
A is a C–algebra equipped with an inner product [ , ] and that
N : A → A is a positive algebra automorphism. Using the fact
that N and P have the same eigenspaces, it is easy to prove that
P is an algebra automorphism. Clearly, from N(1) = 1 we deduce
that 1 ∈ H is an eigenvector and then P (1) = 1. Moreover, it is
easy –and enough– to check the multiplicativity for a pair x, y of
eigenvectors of P –or equivalently, eigenvectors of N–. As xy is also
an eigenvector of N –and then of P–, the multiplicativity follows
immediately.

(2) Later we will use also a dual version of the above result. If N
is a positive multiplicative coalgebra automorphism in the same
situation that above, then its positive square root is also a coalgebra
automorphism.

(3) If C is an arbitrary coalgebra, it is clear that a linear map W :
C → C is a morphism of right comodules if and only if there exists
a functional ω : C → C with the property that W = w ? id. In
that case ω = εW . Assume moreover that C is a simple coalgebra
and that W is positive with respect to a given inner product 〈 , 〉
on C. We want to prove that in this situation there exists another
functional ρ : C → C such that: ρ2 = ω and the map ρ? id : C → C

is positive. Indeed, if we write the decomposition of C as a sum of
W–eigenspaces: C =

⊕
Ea, then W |Ea = λa id with λa a positive

real number. In that case ω|Ea = λaε. If we call P the positive
square root of W , it is clear that on each Ea, the operator P is of
the form

√
λa id. From this expression it follows that P is also a

morphism of right comodules. To prove this we take x ∈ Ea and
hence, P (x) =

√
λax and W (x) = λax. As W is a morphism of

right comodules, we deduce that if we write ∆(x) =
∑
ui⊗ vi with
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vectors vi linearly independent, then λa
∑
ui ⊗ vi =

∑
W (ui)⊗ vi.

Hence, W (ui) = λaui –i.e. ∆(Ea) ⊂ Ea ⊗ C– and by the definition
of P , we know that on the eigenvectors ui, P (ui) =

√
λaui. Hence

P is a morphism of right comodules and as such P = ρ ? id for a
certain linear functional ρ : C → C. In this situation it is clear that
ρ2 = ρ ? ρ = ω.

(4) Observe that we have proved above in part (3), that if V is a right
C–comodule, W : V → V is a morphism of C–comodules and E

is an eigenspace of W , then E ⊂ V is a C–subcomodule. There is
also a version of this result for left C–comodules.

Theorem 7.3. Let (H, ◦) be a compact quantum group and ♦ : H → Hc

be an involution such that (H,♦) is a ◦–Hopf algebra. Then:

(1) There exists a Hopf algebra automorphism P , positive with respect
to the inner product associated to ◦, such that the involutions ♦ and
P ◦ P−1 commute with each other.

(2) If (H,♦) is also a compact quantum group, then ♦ = P ◦ P−1.

Proof. (1) Consider the map Q : H → H defined by Q = ♦◦. Clearly,
Q−1 = ◦♦, Q is an automorphism of Hopf algebras –therefore it
commutes with the antipode– and ϕQ = ϕ where ϕ is the normal
integral on H. Moreover, Q◦ = ◦Q−1 and ♦Q = Q−1

♦. First,
we prove that Q is selfadjoint with respect to the inner product
associated to ◦. Indeed:

〈Q(x), y〉 = ϕ(S(y◦)x◦♦) = (ϕQ−1)(S(y◦)x◦♦)

=ϕ(S(y◦♦◦)x) = ϕ(S(Q(y)◦)x) = 〈x,Q(y)〉.

Therefore, Q2 is a positive automorphism of Hopf algebras and also
Q2 ◦ = ◦Q−2 and ♦Q2 = Q−2

♦.

Let H ′
ρ =

{
Hρ if H♦

ρ = Hρ

Hρ
⊕
H♦
ρ if not

Clearly, for each ρ ∈ Ĥ, H ′
ρ is a ♦-subcoalgebra of H and H =

⊕
ρ∈H H

′
ρ, for some H ⊆ Ĥ.

Then, H ′
ρ is Q2-invariant and finite dimensional and for each

ρ ∈ H we can define the operator Pρ : H ′
ρ → H ′

ρ, that is the

positive fourth-root of Q2|H′

ρ
. We define the operator P : H → H

as the sum of all these Pρ. In this situation P is invertible, positive
and P 4 = Q2.

Now, by applying twice the Observation 7.1 we deduce that P ◦ =
◦P−1 and ♦P = P−1

♦ .
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Then:

♦P ◦ P−1
♦P ◦ P−1 = ♦ ◦ P−2

♦P ◦ P−1 =

♦ ◦ ♦P
3 ◦ P−1 =Q

2
P

−4 = idH .

Hence, we conclude that ♦P ◦ P−1 = (♦P ◦ P−1)−1 = P ◦ P−1
♦.

(2) Assume now that (H,♦) is also a compact quantum group and call
[ , ] the inner product associated to ♦, i.e. defined by [x, y] =
ϕ(S(y♦)x).
In this situation, if x, y ∈ H, we have that

〈Q−1
x, y〉 = ϕ(S(y◦)Q−1

x) = ϕ(S−1(y)◦Q−1
x) =

= (ϕQ)(S−1(y)◦Q−1
x) = ϕ(S−1(y)♦x) = ϕ(S(y♦)x) = [x, y].

Hence Q−1 is positive on (H, 〈 , 〉) and so is Q.
Now, as both P 2 and Q are positive square roots of P 4 = Q2, we
deduce that P 2 = Q and:

P ◦ P−1 = ◦P−2 = ♦♦ ◦ P−2 = ♦QP
−2 = ♦

and the proof is finished.

�

Observation 7.4. The general problem of the existence of a compact invo-
lution for a cosemisimple Hopf algebra is –in the knowledge of the authors–
wide open.

Due to well known results on semisimple Hopf algebras –see for example
[18]–, in the case that the original Hopf algebra H is finite dimensional, a
compact finite quantum group is simply a (finite dimensional) semisimple
Hopf algebra (with a normal left and right integral that we call ϕ : H → C)
with the property that the sesquilinear form in H defined by the formula:
〈x, y〉 = ϕ(S(y◦)x), is positive definite.

In the survey article [5], the following Question 7.8 is raised.

Given a semisimple Hopf algebra H, does it admit a compact involution?.

As far as the authors are aware of, the answer to this question is not
known.

Regarding this point, the particular case of abelian extensions of Hopf
algebras is considered in [17]. In particular when the original Hopf algebras
are of the form H = CF and K = CG, the author briefly considers the ex-
tension problem for H and K considered as finite quantum groups endowed
with their natural ◦–structures. He proves that the group of extensions of
H and K as ◦–Hopf algebras coincides with the group of extensions as Hopf
algebras ([17, Remark 1.11, (2)]).
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One expects that this observation could be generalized to the case of
arbitrary finite dimensional (abelian) extensions.

In the case of a not necessarily finite dimensional (cosemisimple) Hopf
algebra H, the classical situation could be an indication of the results to
be expected. At most one should expect to construct a compact involution
in a sufficiently large quotient of H.

8. The mien of the antipode of a compact quantum group

In this section we intend to obtain a better understanding of the antipode
antiautomorphism S in the case of a compact quantum group, and for this
purpose we apply in this particular set up, some of the standard tools in the
theory of coFrobenius Hopf algebras: the modular function, the Nakayama
automorphism, Radford’s formula, etc. Our algebraic methods differ from
the more standard analytical methods applied for example in [16].

We start by defining the positive antipode. Once we know (see Corollary
6.8) that S2 is a positive Hopf algebra automorphism with respect to the
inner product 〈 , 〉 given by the normal integral, it follows from the results
mentioned in Observation 7.2 that there exists a positive automorphism of
algebras and coalgebras that is the positive square root of S2.

Definition 8.1. Let H be a compact quantum group with integral ϕ and
associated inner product 〈 , 〉. Then the unique positive automorphism of
algebras and coalgebras S+ : H → H that satisfies

S
2 = S

2
+. (11)

is called the positive antipode of H.

Observation 8.2. It is clear that S+ leaves all the simple components Hρ
invariant.

Our next objective is to prove that S+ is an inner automorphism and
then to deduce that S2 : H → H is also an inner automorphism –see [16]
for a proof of this result–.

This result will follow easily from the following well known fact: a coal-
gebra automorhism of a matrix coalgebra is inner –the dual of this result
is attributed to A.A. Albert in a more general version–.

Theorem 8.3 (A.A.Albert). Let V be a finite dimensional vector space
and consider the coalgebra c(V ). Let T : c(V ) → c(V ) be an automorphism
of coalgebras. Then, there exists a convolution invertible functional τ :
c(V ) → C, such that T = (τ ? id)(id ? τ−1). Moreover, the linear functional
τ is unique up to multiplication by a non zero scalar.
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Observation 8.4. Assume that C is a finite–dimensional coalgebra and
that T : C → C is a linear map that can be written as: T = (τ ? id)(id ? ρ)
and that satisfies the equality εT = ε. Then ρ = τ−1, τT = τ , ρT = ρ and
T is a morphism of coalgebras.

The following consequences of Albert’s theorem 8.3, will be used later.

Corollary 8.5. Assume that C is a ◦–coalgebra that is simple and equipped
with a unitary inner product 〈 , 〉. Let T be an automorphism of coalgebras
and suppose that it can be decomposed as T = (τ ? id)(id ? τ−1) where τ ? id
as well as id ? τ−1 are selfadjoint. If T is positive then τ ? id and id ? τ−1

can be taken to be positive.

Proof. Notice that the existence of a functional τ yielding a decomposition
as above follows easily from Theorem 8.3. The selfadjointness has to be
assumed as hypothesis.

Let us call Eλ and Fµ the eigenspaces for τ ? id and id ? τ−1 corresponding
to the eigenvalues λ and µ respectively.

As E = Eλ ∩Fµ is a common eigenspace for the –commuting– operators
τ ? id and id ? τ−1, it is clear that λµ is an eigenvalue of T and then it is
positive and we deduce that λ and µ –are real and– have the same sign.

Next we prove that one of the subspaces E+ =
⊕

λ>0, µ>0Eλ ∩ Fµ or

E− =
⊕

λ<0, µ<0Eλ ∩ Fµ has to be trivial. Observe that they satisfy that
C = E+ ⊕ E−.

It follows from Observation 7.2 part (4) that ∆(Eλ) ⊂ Eλ⊗C and simi-
larly ∆(Fµ) ⊂ C⊗Fµ. Then ∆(Eλ∩Fµ) ⊂ (Eλ⊗C)∩ (C⊗Fµ) = Eλ⊗Fµ.
It is clear that for λ > 0, µ > 0, Eλ andFµ ⊂ E+ –and similarly for nega-
tive eigenvalues– and then it follows that: ∆(E+) ⊂ E+ ⊗ E+, ∆(E−) ⊂
E− ⊗ E−. As the coalgebra C is simple, we deduce that one of these sub-
spaces (subcoalgebras) has to be trivial.

Hence, after eventually changing τ by −τ we deduce that we can assume
that the functional appearing in the formula T = (τ ? id)(id ? τ−1) has the
property that τ ? id and id ? τ−1 are positive.

�

Lemma 8.6. Assume that H is a compact quantum group and that 〈 , 〉
is the inner product associated to the normal integral ϕ. For τ ∈ H∗, the
adjoints of the maps id?τ , τ ? id : H → H with respect to the inner product
are: (id ? τ)∗ = id ? (τ ◦) and (τ ? id)∗ = (τS2◦) ? id respectively.

Proof. We only prove the second assertion, the first is similar. We take
z,w ∈ H and compute explicitly 〈(τ ? id)(z), w〉 and 〈z, ((τS2◦) ? id)(w)〉.
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In this situation the first expression is : 〈(τ ? id)(z), w〉 = τ(
∑
z1〈z2, w〉) =

τ(
∑
S2(w◦

1)〈z,w2〉) = 〈z,
∑
τ(S2(w◦

1))w2〉 = 〈z, ((τS2◦) ? id)(w)〉. The
second, in the chain of equalities above, comes from Observation 6.3, part
(4), equation (8). �

We use the structure theorem –see Theorem 4.3 and also Observation
6.3– to conclude that whenever H is a compact quantum group, the maps
S+ : H → H and S2 : H → H are inner automorphisms.

Theorem 8.7. Let H be a compact quantum group with antipode S and let
S+ be its positive antipode. Then, there exists a linear functional β : H → C

such that S+ = (β ? id)(id ? β−1) and S2 = (β2 ? id)(id ? β−2).

Moreover, the restriction of β to each simple component Hρ, is unique
up to multiplication by a non–zero scalar.

Furthermore, we can assume that the linear functional β has been chosen
as to satisfy the following additional properties:

(i) β = β S+, β−1 = β−1 S+;
(ii) β = β ◦;
(iii) In the decomposition of the positive antipode S+ = (β?id)(id? β−1),

the operators β ? id and id ? β−1 are selfadjoint, commute with each
other and leave invariat the simple components Hρ of H.

(iv) The operators β ? id as well as id ? β−1 are positive.

Proof. We decompose H =
⊕

ρHρ, where each Hρ is a simple coalgebra

closed by the ◦ operator of H. It was already proved that S2(Hρ) = Hρ

and S+(Hρ) = Hρ, hence for some βρ : Hρ → C the automorphism S+|Hρ =

(βρ ? id)(id ? β−1
ρ ). If we call β : H → C the direct sum of all the βρ, we

have that S+ = (β ? id)(id ? β−1).

For the rest of the proof we proceed as follows.

(i) Applying β or β−1 to the equality S+(x) =
∑
β(x1)x2β

−1(x3) we
deduce the result.

(ii) Taking the adjoint of the operators in the formula S+ = (β ? id)(id ?
β−1) and recalling that S+ is selfadjoint we obtain the following: S+ = (β ?

id)∗(id?β−1)∗ = ((βS2◦)? id)(id?(β−1◦)) = ((β◦)? id)(id?(β◦)−1). Hence
using again the uniqueness of β up to a scalar in each simple coalgebra, we
conclude that if we call βρ the corresponding restriction, for each ρ there

exists a scalar aρ ∈ C: βρ = aρβρ◦. It is clear that |aρ| = 1. Indeed, we first

deduce that βρ◦ = aρβρ and then –after conjugation and multiplication by
aρ– we obtain that βρ = |aρ|

2βρ, i.e. |aρ| = 1.
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Hence if we take bρ to be a solution of the equation bρaρ = bρ, and call
γρ = bρβρ, the new functional γρ satisfies the condition γρ = γρ◦. Hence,
after changing βρ by γρ whenever it is needed, we obtain a new functional β

–we call it β instead of γ to simplify notations– that satisfies that β = β ◦.

(iii) The fact that the operators β ? id and id ? β−1 are selfadjoint is a
direct consequence of (i) and (ii). Clearly they leave invariant the simple
components Hρ.

(iv) This positivity result follows immediately from Corollary 8.5. Notice
that the eventual change of sign necessary to make the operators positive –
that we might have performed in accordance with the mentioned corollary–
does not affect the properties (i), (ii) and (iii). �

Next we record for future use, some easy consequences of the results
about Radford’s formula for coFrobenius coalgebras that appeared in [6].
Previously, in [27, Theorem 5.6] and in the context of compact quantum
groups, some of these topics were considered.

Observation 8.8. We say that H is a coFrobenius Hopf algebra over C
if there exists a non–zero right (or equivalently a non–zero left) integral
that will be called ϕ : H → C. In this situation there are bijections
x 7→ (ϕ ↼ x) : H → H∗, rat and x 7→ (x ⇀ ϕ) : H → H∗, rat.

(1) Using the above isomorphisms, we can construct the Nakayama
automorphism of algebras characterized by the equality ϕ(xy) =
ϕ(yN (x)) –for all x, y ∈ H–. The modular function of the coFrobe-
nius Hopf algebra H, is defined as α = εN . The distinghished
group like element in H –called g– is the unique group like element
in H such that for all x ∈ H:

∑
x1ϕ(x2) = ϕ(x)g. In [6] the

authors prove the following formulæ:

N (x) =
∑

α(x1)S
−2(x2), S

4(x) = g

(∑
α(x1)x2α

−1(x3)
)
g
−1

, x ∈ H,

(12)

where g ∈ H is the distinguished group like element in H.
Clearly α : H → C is an algebra homomorphism and α−1 = αS.

(2) It follows easily from the equation (12) that the inverse of N can
be computed as:

N−1(x) =
∑

α
−1(x1)S

2(x2). (13)

Also, N satisfies the following formula:

∆(N (x)) =
∑

N (x1) ⊗ S
−2(x2) =

∑
N (x1) ⊗ (α−1

? N )(x2). (14)
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In other words, the map N is a morphism of comodules with the
structures displayed below:

N : (H,∆) = H → (H, (id⊗S
−2)∆) = HS−2.

(3) The Nakayama morphism is comultiplicative if and only if α = ε or
equivalently if and only if N = S−2. Indeed, from the comultiplica-
tivity of N and from equation (14) we deduce that for all x ∈ H,∑
x1 ⊗ S−2(x2) =

∑
x1 ⊗ N (x2). Then N = S−2 and composing

with ε we deduce that α = ε. The converse is clear.
(4) If H is also unimodular, we have that N−1 = S−1NS.

Indeed:
ϕ(N−1(x)y) = ϕ(yx) = ϕ(SxSy) = ϕ(SyNSx) =
= ϕ((S−1NS)(x)y).

(5) In the situation that the Hopf algebra is unimodular, the distin-
guished group like element g = 1 and we have that:

S
4 = (α ? id)(id ?α−1) (15)

N = α ? S
−2 = S

2
? α , N−1 = α

−1
? S

2 = S
−2
? α

−1 (16)

It follows easily from the above formulæ that S2N = NS2 = α ? id
and the Nakayama automorphism commutes with S2.

In the case of a compact quantum group more information can be ob-
tained about the maps considered above.

Lemma 8.9. Let H be a compact quantum group equipped with the inner
product 〈 , 〉 given by the normal integral ϕ. Then:

(1) The Nakayama automorphism N is a positive operator with respect
to 〈 , 〉. Moreover it preserves the decomposition in simple compo-
nents Hρ –see Theorem 4.3–.

(2) The Nakayama automorphism commutes with ◦.
(3) If α : H → C is the modular function, then α ? id : H → H is a

positive operator with respect to the inner product 〈 , 〉.

Proof. (1) The fact that N preserves the simple components Hρ follows
immediately from Equation (12). The following chain of equalities –applied
for y = x– proves the positivity of N .

〈Nx, y〉 = ϕ(S(y◦)Nx) = ϕ(xS(y◦)) = 〈S(y◦), S(x◦)〉. (17)

For the last equality we used that: S ◦ S ◦ = id.

(2) The proof of this commutation property follows from the equalities
below:

ϕ(yN (x◦)) = ϕ(x◦y) = ϕ(xy◦) = ϕ(y◦N (x)) = ϕ(yN (x)◦). (18)

São Paulo J.Math.Sci. 3, 2 (2009), 193–229



Compact quantum groups and the positive antipode 223

(3) This positivity result follows directly from the fact that α ? id is the
composition of N and S2 that are positive and commuting operators. �

Definition 8.10. Let H be a compact quantum group and call 〈 , 〉 the
unitary inner product associated to the normal integral ϕ. We define the
positive square root of Nakayama automorphism –and denote it as P– as
the unique automorphism of algebras that is positive and satisfies that
P2 = N .

Corollary 8.11. Let H be a compact quantum group and call ϕ its normal
integral. In the notations above, if β is defined as in Theorem 8.7, then
β : H → C can be taken also to be an algebra morphism that satisfies
β4 = α.

Proof. The functional β that we constructed before satisfies: S4 = α ?

id ?α−1 = β4 ? id ? β−4. After restricting to each simple component Hρ

we use Theorem 8.3 to prove the existence of a non zero scalar cρ ∈ C ,
with the property that α|Hρ = cρβ

4|Hρ . It is clear that being the operators
associated to α|Hρ and to β|Hρ positive –see Lemma 8.9 and Theorem 8.7–
the scalar cρ is in fact a positive real number. If we change for each ρ the

functional βρ by the functional c
1/4
ρ βρ where c

1/4
ρ is the positive fourth root

of cρ, we obtain that β4 = α and this change does not affect the positivity
of β.

In order to prove the multiplicativity, we observe that in accordance to
the previous constructions β ? id is a positive operator with the property
that (β ? id)4 = α ? id. It follows from Observation 7.2 that the unique
fourth root of the multiplicative map α ? id is also multiplicative. Hence,
β ? id as well as β = ε(β ? id) are multiplicative. �

Observation 8.12. (1) Once we know that β is a morphism of alge-
bras it is clear that:

β
−1 = βS β = β

−1
S. (19)

(2) Below, we list the expressions of some of the maps considered above
in terms of β.

N = β
2
? id ? β2 N−1 = β

−2
? id ? β−2 (20)

P = β ? id ? β S+ = β ? id ? β−1

PS+ = β
2
? id P−1

S+ = id ? β−2
.

The formula for N follows directly from equation (16), and the
formula for P follows from the fact that id?β and β ? id are positive
and from the uniqueness of the square root of the positive operator
N .
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Next we use the automorphism N to compute explicitly the adjoint of S
and obtain some preliminary consequences of the normality of the operator
S. This initial result will be refined in Theorem 8.15.

Lemma 8.13. Let H be a compact quantum group with normal integral ϕ
and associated inner product 〈 , 〉.

(1) The adjoint of the operator S : H → H is S∗ = SN−1 = NS =
S−1 ? α−1.

(2) In the situation above, SS∗ = S2N−1 = N−1S2 = id ?α−1 and
S∗S = NS2 = S2N = α ? id.

(3) The operator S is normal if and only if S4 = id and α2 = ε.

Proof. (1) For x, y ∈ H we have that: 〈Sx, y〉 = ϕ((S◦)ySx) = ϕ(xy◦).
Moreover: 〈x, SN−1y〉 = ϕ((S◦SN−1)(y)x) = ϕ((◦N−1)(y)x) =

ϕ(N−1(y)x◦) = ϕ(x◦y) = ϕ(xy◦).
In the above chain of equalities we have used first that S ◦S = ◦,

then that ϕ◦ = ϕ, later the definition of N to change the order of
the product inside ϕ and then again that ϕ◦ = ϕ, –see Observation
6.2–.

(2) Clearly: SS∗ = S2N−1 = N−1S2 = (α−1 ? id)S4 = id ?α−1.
Also S∗S = NS2 = α ? id.

(3) Then, S∗S = S∗S if and only if id ?α−1 = α ? id. Composing
this equality with ε we obtain that α2 = ε. Hence, we deduce
that id ?α = α ? id and this obviously implies that S4 = (α ?
id)(id ?α−1) = id. The converse follows easily.

�

Observation 8.14. Assume that we are in the situation considered above.

(1) It is clear that the operators SS∗ and S∗S leave all the simple coal-
gebras Hρ stable. Moreover the positive square roots of SS∗ and
S∗S are respectively: P−1S+ and PS+. Then the right polar de-
composition of S is S = UPS+ and the left polar decomposition is
S = P−1S+U , where U is unitary and equal to: U = SS

−1
+ P−1 =

S
−1
+ PS. It is clear that the operator U : H → H is an antimulti-

plicative involution –i.e. U2 = id–. In the literature the operator
U is sometimes called the unitary antipode.

(2) In the case that U = id, it is clear that the antipode S, being equal
to S = PS+ is multiplicative. As it is also antimultiplicative and
bijective, we conclude that the product of H is commutative.

Theorem 8.15. Let H be a compact quantum group and consider the inner
product given by the normal integral. Then, the following properties are
equivalent:
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(1) The compact quantum group H is involutive: i.e., S2 = id.
(2) The positive antipode is trivial: i.e., S+ = id.
(3) The unitary antipode coincides with S: i.e., U = S.
(4) The antipode S has finite order.
(5) The antipode S is a normal operator: i.e., S commutes with S∗.
(6) The antipode S is a selfadjoint operator.
(7) The integral ϕ : H → C is central: ϕ(xy) = ϕ(yx) –see [27]–.
(8) The automorphism N = id.

Proof. As the only positive square root of the identity is the identity itself,
(2) follows clearly from (1). If S has finite order so does S2 and also the
positive automorphism S+. Then, S+ = id. This shows that the conditions
(1), (2) and (4) are equivalent. To prove that (1) implies (5) we observe
that in the hypothesis of (1), β can be taken to be β = ε and hence we
deduce from Lemma 8.13 that S is normal. Moreover, if we assume that
the antipode is normal, using Lemma 8.13 we deduce that it has finite
order. We have proved the equivalence between (1), (2), (4) and (5). The
equivalence bewteen (6) and (7) is also clear. We know from Lemma 8.13
that S∗ = SN−1. Hence S is selfadjoint if and only if N = id and this
happens –by definition of N– if and only if ϕ(xy) = ϕ(yx).

Now we prove that condition (2) implies condition (6). Indeed in this
case, it follows that β = ε and then –in accordance with equation (20)– we
deduce that N = id.

We finish the proof by observing that condition (3) is equivalent to con-
dition (2). Indeed, in the case that S = U as we know that U2 = id, we
conclude that S2 = id. Conversely, if S+ = id, then condition (7) guaran-
tees that N = id and then P = S+ = id. Using the formula U = SS

−1
+ P−1

we conclude that U = S –see Observation 8.14–.

�

Some additional informacion can be obtained about the unitary antipode
and Nakayama morphism in terms of the adjoint of the antipode.

Theorem 8.16. Let H be a compact quantum group and consider the inner
product given by the normal integral. Then, the following properties are
equivalent:

(1) The adjoint of the antipode S∗ is an antimorphism of coalgebras.
(2) The unitary antipode U is a morphism of coalgebras.
(3) The Nakayama morphism N is a comultiplicative morphism.
(4) The functional α coincides with the counit.
(5) The Nakayama morphism N equals S−2.
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Proof. Suppose (1) holds. Then SS∗ is a morphism of coalgebras and so
is PS+. Using that S = UPS+, we get that U is an antimorphism of
coalgebras.

Suppose (2) holds. As S = UPS+, S is an antimorphism of coalgebras
and S+ is a morphism of coalgebras, we deduce that P and N = P2 are
morphisms of coalgebras and we have (3).

Suppose now that (3) holds. Then P, PS+ and SS∗ = (PS+)2 are
comultiplicative. Then, S∗ is an antimorphism of coalgebras.

Suppose now that (3) holds. From the equality N = α?S−2 we conclude
that α ? id is comultiplicative. In that case applying ε ⊗ ε to the equality∑
α(x1)x2⊗α(x3)x4 =

∑
α(x1)x2⊗x3 we deduce that α?α = α and then

α = ε, and we deduce that condition (4) is satisfied.

It is clear that if α = ε, then N = S−2 and then it is comultiplicative.
In other words from condition (5) we easily deduce condition (3). �

9. The quantum special unitary group

In this section we want to illustrate our constructions in the case of the
group SUµ(2,C), viewed as a ◦–Hopf algebra rather than as it is usually
presented in terms of a ?–operator.

Definition 9.1. Let µ ∈ C be a non zero real number such that |µ| < 1.
We call SUµ(2,C) = C〈α, γ, γ◦, α̂〉 the non commutative algebra in the
variables written above, subject to the following multiplicative relations.

α̂α− µγ
◦
γ = 1 αα̂ − µ

3
γγ

◦ = 1

γ
◦
γ = γγ

◦

µγα = αγ µγ
◦
α = αγ

◦

µ
−1
γα̂ = α̂γ µ

−1
γ
◦
α̂ = α̂γ

◦

(21)

The ◦ operator is defined as being multiplicative, involutive, conjugate
linear and taking on the generators α, α̂ the values:

α
◦ = α α̂

◦ = α̂ (22)

The comultiplication and counit are defined as:

∆(α) = α⊗ α+ µ
2
γ
◦ ⊗ γ ∆(α̂) = α̂⊗ α̂+ µ

2
γ ⊗ γ

◦

∆(γ) = γ ⊗ α+ α̂ ⊗ γ ∆(γ◦) = α⊗ γ
◦ + γ

◦ ⊗ α̂
(23)

ε(α) = 1 ε(α̂) = 1 ε(γ) = 0 ε(γ◦) = 0 (24)
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The linear map S : SUµ(2,C) → SUµ(2,C) defined on the generators as:

S(α) = α̂ S(α̂) = α S(γ) = −µγ S(γ◦) = −µ−1
γ
◦
, (25)

and then extended antimultiplicatively to all SUµ(2,C) is the antipode of
the above structure.

It is well known that SUµ(2,C) is a compact quantum group and as such
it is equipped with an integral and an inner product for which we shall
not provide an explicit expression. See [26] and [27] for a detailed study of
this family of Hopf algebras from the C∗–algebra viewpoint, where explicit
formulæ are presented.

A direct computation shows that the linear functional θ : SUµ(2,C) → C

defined by the equality S2 = θ ? id ? θS can be taken as:

θ(α) = |µ|−1
θ(α̂) = |µ| θ(γ) = θ(γ◦) = 0, (26)

and then extended multiplicatively.

In this situation, if we consider β : SUµ(2,C) → C defined as:

β(α) = |µ|−1/2
β(α̂) = |µ|1/2 β(γ) = β(γ◦) = 0, (27)

we find that the positive antipode is given on the generators as:

S+(α) = α S+(α̂) = α̂ S+(γ) = |µ|γ S+(γ◦) = |µ|−1
γ
◦
. (28)

In this situation we obtain the following formulæ for the Nakayama auto-
morphism N and for P.

N (α) = µ
−2
α N (α̂) = µ

2
α̂ N (γ) = γ N (γ◦) = γ

◦ (29)

P(α) = |µ|−1
α P(α̂) = |µ|α̂ P(γ) = γ P(γ◦) = γ

◦ (30)

The unitary antipode U can be computed by the following formulae:

U(α) = |µ|α̂ U(α̂) = |µ|−1
α U(γ) = − sg(µ)γ U(γ◦) = − sg(µ)γ◦

(31)
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