2,874 research outputs found

    Transport and Helfand moments in the Lennard-Jones fluid. II. Thermal Conductivity

    Full text link
    The thermal conductivity is calculated with the Helfand-moment method in the Lennard-Jones fluid near the triple point. The Helfand moment of thermal conductivity is here derived for molecular dynamics with periodic boundary conditions. Thermal conductivity is given by a generalized Einstein relation with this Helfand moment. We compute thermal conductivity by this new method and compare it with our own values obtained by the standard Green-Kubo method. The agreement is excellent.Comment: Submitted to the Journal of Chemical Physic

    Vibration isolation for line of sight performance improvement

    Get PDF
    Diagrams of the Reaction Wheel Assembly (RWA) are presented along with charts and graphs illustrating jitter error model, induced vibration tests, radial displacement transfer function, and axial displacement power spectra density. The RWA isolator specification requirements are listed

    Transport and Helfand moments in the Lennard-Jones fluid. I. Shear viscosity

    Full text link
    We propose a new method, the Helfand-moment method, to compute the shear viscosity by equilibrium molecular dynamics in periodic systems. In this method, the shear viscosity is written as an Einstein-like relation in terms of the variance of the so-called Helfand moment. This quantity, is modified in order to satisfy systems with periodic boundary conditions usually considered in molecular dynamics. We calculate the shear viscosity in the Lennard-Jones fluid near the triple point thanks to this new technique. We show that the results of the Helfand-moment method are in excellent agreement with the results of the standard Green-Kubo method.Comment: Submitted to the Journal of Chemical Physic

    Dopant site selectivity in BaCe0.85M0.15O3-δ by extended x-ray absorption fine structure

    Get PDF
    Rare earth doped BaCeO3 has been widely investigated as a proton conducting material. Trivalent dopants are generally assumed to fully occupy the Ce4+-site, and thereby introduce oxygen vacancies into the perovskite structure. Recent studies indicate the possibility of partial dopant incorporation onto the Ba2+-site concomitant with BaO evaporation, reducing the oxygen vacancy content. Because proton incorporation requires, as a first step, the generation of oxygen vacancies such dopant partitioning is detrimental to protonic conductivity. A quantitative Extended X-ray Absorption Fine Structure (EXAFS) study of BaCe0.85M0.15O3-δ (M=Yb,Gd) is presented here along with complementary x-ray powder diffraction and electron probe chemical analyses. The EXAFS results demonstrate that as much as 4.6% of the ytterbium and 7.2% of the gadolinium intended for incorporation onto the Ce site, in fact, resides on the Ba site. The results are in qualitative agreement with the diffraction and chemical analyses, which additionally show an even greater extent of Nd incorporation on the Ba site

    Reconsidering Selective Conscientious Objection

    Get PDF
    In 1971, in the midst of the Vietnam War, the United States Supreme Court decided that to qualify as a conscientious objector (“CO”) one must oppose all war, and not just a particular war. The Court’s decision in Gillette v. United States turned on its interpretation of section 6(j) of the Military Selective Service Act. Section 6(j) provided, in relevant part, that no person shall “be subject to combatant training and service in the armed forces of the United States who, by reason of religious training and belief, is conscientiously opposed to participation in war in any form.” According to the Court, “an objection involving a particular war rather than all war would plainly not be covered by § 6(j).” Consequently, the Court construed the exemption from combatant military service in section 6(j) not to extend to so-called “selective conscientious objectors” (“SCOs”)

    Nanoscale alpha-structural domains in the phonon-glass thermoelectric material beta-Zn4Sb3

    Get PDF
    A study of the local atomic structure of the promising thermoelectric material beta-Zn4Sb3, using atomic pair distribution function (PDF) analysis of x-ray- and neutron-diffraction data, suggests that the material is nanostructured. The local structure of the beta phase closely resembles that of the low-temperature alpha phase. The alpha structure contains ordered zinc interstitial atoms which are not long range ordered in the beta phase. A rough estimate of the domain size from a visual inspection of the PDF is <~10 nm. It is probable that the nanoscale domains found in this study play an important role in the exceptionally low thermal conductivity of beta-Zn4Sb3

    Defect chemistry and transport properties of BaxCe0.85M0.15O3-d

    Get PDF
    The site-incorporation mechanism of M3+ dopants into A2+B4+O3 perovskites controls the overall defect chemistry and thus their transport properties. For charge-balance reasons, incorporation onto the A2+-site would require the creation of negatively charged point defects (such as cation vacancies), whereas incorporation onto the B4+-site is accompanied by the generation of positively charged defects, typically oxygen vacancies. Oxygen-vacancy content, in turn, is relevant to proton-conducting oxides in which protons are introduced via the dissolution of hydroxyl ions at vacant oxygen sites. We propose here, on the basis of x-ray powder diffraction studies, electron microscopy, chemical analysis, thermal gravimetric analysis, and alternating current impedance spectroscopy, that nominally B-site doped barium cerate can exhibit dopant partitioning as a consequence of barium evaporation at elevated temperatures. Such partitioning and the presence of significant dopant concentrations on the A-site negatively impact proton conductivity. Specific materials examined are BaxCe0.85M0.15O3-d (x = 0.85 - 1.20; M = Nd, Gd, Yb). The compositional limits for the maximum A-site incorporation are experimentally determined to be: (Ba0.919Nd0.081)(Ce0.919Nd0.081)O3, (Ba0.974Gd0.026)(Ce0.872Gd0.128)O2.875, and Ba(Ce0.85Yb0.15)O2.925. As a consequence of the greater ability of larger cations to exist on the Ba site, the H2O adsorption and proton conductivities of large-cation doped barium cerates are lower than those of small-cation doped analogs
    • …
    corecore