49 research outputs found
Fuzzy decision making method based on CoCoSo with critic for financial risk evaluation
The financial risk evaluation is critically vital for enterprises to identify the potential financial risks, provide decision basis for financial risk management, and prevent and reduce risk losses. In the case of considering financial risk assessment, the basic problems that arise are related to strong fuzziness, ambiguity and inaccuracy. q-rung orthopair fuzzy set (q-ROFS), portrayed by the degrees of membership and non-membership, is a more resultful tool to seize fuzziness. In this article, the novel q-rung orthopair fuzzy score function is given for dealing the comparison problem. Later, the and operations are explored and their interesting properties are discussed. Then, the objective weights are calculated by CRITIC (Criteria Importance Through Inter-criteria Correlation). Moreover, we present combined weights that reflects both subjective preference and objective preference. In addition, the q-rung orthopair fuzzy MCDM (multi-criteria decision making) algorithm based on CoCoSo (Combined Compromise Solution) is presented. Finally, the feasibility of algorithm is stated by a financial risk evaluation example with corresponding sensitivity analysis. The salient features of the proposed algorithm are that they have no counter-intuitive case and have a stronger capacity in differentiating the best alternative.
First published online 03 March 202
Nucleophile Promoted Gold Redox Catalysis With Diazonium: C-Br, C-S And C-P Bond Formation Through Catalytic Sandmeyer Coupling
Gold-catalyzed C-heteroatom (C–X) coupling reactions are evaluated without using sacrificial oxidants. Vital to the success of this methodology is the nucleophile-assisted activation of aryldiazonium salts, which could be an effective oxidant for converting Au(I) to Au(III) even without the addition of an assisting ligand or photocatalyst. By accelerating the reaction kinetics to outcompete C–C homo-coupling or diazonium dediazoniation, gold-catalyzed Sandmeyer reactions were achieved with different nucleophiles, forming C–Br, C–S and C–P bonds in high yields and selectivities
Nucleophile Promoted Gold Redox Catalysis with diazonium: CBr, C-S and C-P Bond Formation through Catalytic Sandmeyer Coupling
Gold-catalyzed C-heteroatom (C-X) coupling reactions are evaluated without using sacrificial oxidants. Vital to the success of this methodology is the nucleophile-assisted activation of aryldiazonium salts, which could be an effective oxidant to convert Au(I) to Au(III) even without the addition of assisting ligand or photocatalyst. By accelerating reaction kinetics to outcompete C-C homo-coupling or diazonium dediazoniation, gold-catalyzed Sandmeyer reactions were achieved with different nucleophiles, forming C-Br, C-S and C-P bonds in high yields and selectivity
Industrial Control System Fingerprinting and Anomaly Detection
Part 2: CONTROL SYSTEMS SECURITY International audience Industrial control systems are cyber-physical systems that supervise and control physical processes in critical infrastructures such as electric grids, water and wastewater treatment plants, oil and natural gas pipelines, transportation systems and chemical plants and refineries. Leveraging the stable and persistent control flow communications patterns in industrial control systems, this chapter proposes an innovative control system fingerprinting methodology that analyzes industrial control protocols to capture normal behavior characteristics. The methodology can be used to identify specific physical processes and control system components in industrial facilities and detect abnormal behavior. An experimental testbed that incorporates real systems for the cyber domain and simulated systems for the physical domain is used to validate the methodology. The experimental results demonstrate that the fingerprinting methodology holds promise for detecting anomalies in industrial control systems and cyber-physical systems used in the critical infrastructure.
Document type: Part of book or chapter of boo
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Industrial Control System Fingerprinting and Anomaly Detection
Part 2: CONTROL SYSTEMS SECURITYInternational audienceIndustrial control systems are cyber-physical systems that supervise and control physical processes in critical infrastructures such as electric grids, water and wastewater treatment plants, oil and natural gas pipelines, transportation systems and chemical plants and refineries. Leveraging the stable and persistent control flow communications patterns in industrial control systems, this chapter proposes an innovative control system fingerprinting methodology that analyzes industrial control protocols to capture normal behavior characteristics. The methodology can be used to identify specific physical processes and control system components in industrial facilities and detect abnormal behavior. An experimental testbed that incorporates real systems for the cyber domain and simulated systems for the physical domain is used to validate the methodology. The experimental results demonstrate that the fingerprinting methodology holds promise for detecting anomalies in industrial control systems and cyber-physical systems used in the critical infrastructure
Nucleophile Promoted Gold Redox Catalysis with Diazonium Salts: C-Br, C-S and C-P Bond Formation through Catalytic Sandmeyer Coupling
Gold-catalyzed C-heteroatom (C-X) coupling reactions are evaluated without using sacrificial oxidants. Vital to the success of this methodology is the nucleophile-assisted activation of aryldiazonium salts, which could be an effective oxidant for converting Au(i) to Au(iii) even without the addition of an assisting ligand or photocatalyst. By accelerating the reaction kinetics to outcompete C-C homo-coupling or diazonium dediazoniation, gold-catalyzed Sandmeyer reactions were achieved with different nucleophiles, forming C-Br, C-S and C-P bonds in high yields and selectivities
Implications of Nd isotopic mapping for crustal composition and metallogenesis in the Sanjiang orogenic belt (SW China)
The Sanjiang orogenic belt, located in southwestern China and the southeastern Tibetan Plateau, includes a variety of economically important metal deposits. Previous studies have focused on Lu-Hf isotopic mapping to suggest its lithospheric architecture and mineralization. In this study, we provide the results of Nd isotopic mapping and compare them with the results of Hf isotopic mapping based on the similarity of Sm-Nd and Lu-Hf isotope systems, which indicate three juvenile domains with high εNd(t) and young Nd model ages within the Eastern Qiangtang-Simao terrane, while presenting negative εNd(t) values over the entire horizon. The very negative εNd(t) and old Nd model ages found in the Tengchong-Baoshan terrane and Changning-Menglian suture suggest that these terranes are old and might be reworked. The Nd isotopic mapping of the Sanjiang orogenic belt also suggests a relationship between different lithospheric architectures and the locations of distinct ore deposits. Porphyry-skarn Cu–Mo–(Au) deposits occur in the juvenile crust, which has relatively high εNd(t) (−3.3–5.1) and young TDM ages, whereas skarn and hydrothermal vein-type W–Sn deposits and Pb‒Zn‒Cu‒Ag deposits are located in the low-εNd(t) area