339 research outputs found
Functional complementation between FADD and RIP1 in embryos and lymphocytes.
FADD is a common adaptor shared by several death receptors for signalling apoptosis through recruitment and activation of caspase 8 (refs 1-3). Death receptors are essential for immune homeostasis, but dispensable during embryogenesis. Surprisingly, Fadd(-/-) mice die in utero and conditional deletion of FADD leads to impaired lymphocyte proliferation. How FADD regulates embryogenesis and lymphocyte responses has been a long-standing enigma. FADD could directly bind to RIP1 (also known as RIPK1), a serine/threonine kinase that mediates both necrosis and NF-κB activation. Here we show that Fadd(-/-) embryos contain raised levels of RIP1 and exhibit massive necrosis. To investigate a potential in vivo functional interaction between RIP1 and FADD, null alleles of RIP1 were crossed into Fadd(-/-) mice. Notably, RIP1 deficiency allowed normal embryogenesis of Fadd(-/-) mice. Conversely, the developmental defect of Rip1(-/-) lymphocytes was partially corrected by FADD deletion. Furthermore, RIP1 deficiency fully restored normal proliferation in Fadd(-/-) T cells but not in Fadd(-/-) B cells. Fadd(-/-)Rip1(-/-) double-knockout T cells are resistant to death induced by Fas or TNF-α and show reduced NF-κB activity. Therefore, our data demonstrate an unexpected cell-type-specific interplay between FADD and RIP1, which is critical for the regulation of apoptosis and necrosis during embryogenesis and lymphocyte function
Self-blindable credential: Towards anonymous entity authentication upon resource-constrained devices
White Matter Abnormalities in Major Depression: A Tract-Based Spatial Statistics and Rumination Study
Increasing evidence indicates that major depressive disorder (MDD) is usually accompanied by altered white matter in the prefrontal cortex, the parietal lobe and the limbic system. As a behavioral abnormity of MDD, rumination has been believed to be a substantial indicator of the mental state of the depressive state. So far, however, no report that we are aware of has evaluated the relationship between white matter alterations and the ruminative state. In this study, we first explored the altered white matter using a tract-based spatial statistics (TBSS) method based on diffusion tensor imaging of 19 healthy and 16 depressive subjects. We then investigated correlations between the altered white matter microstructure in the identified altered regions and the severity of ruminations measured by the ruminative response scale. Our results demonstrated altered white matter microstructure in circuits connecting the prefrontal lobe, the parietal lobe and the limbic system (p<0.005, uncorrected), findings which support previous research. More importantly, the result also indicated that a greater alteration in the white matter is associated with a more ruminative state (p<0.05, Bonferroni corrected). The detected abnormalities in the white matter should be interpreted cautiously because of the small sample size in this study. This finding supports the psychometric significance of white matter deficits in MDD
A Simple All-fiber Comb Filter Based on the Combined Effect of Multimode Interference and Mach- Zehnder Interferometer
A polarization-dependent all-fiber comb filter based on a combination effect of multimode interference and Mach-Zehnder interferometer was proposed and demonstrated. The comb filter was composed with a short section of multimode fiber (MMF) fusion spliced with a conventional single mode fiber on the one side and a short section of a different type of optical fiber on the other side. The second type of optical fiber is spliced to the MMF with a properly designed misalignment. Different types and lengths of fibers were used to investigate the influence of fiber types and lengths on the performance of the comb filter. Experimentally, several comb filters with free spectral range (FSR) values ranging from 0.236 to 1.524 nm were achieved. The extinction ratio of the comb filter can be adjusted from 6 to 11.1 dB by varying polarization states of the input light, while maintaining the FSR unchanged. The proposed comb filter has the potential to be used in optical dense wavelength division multiplexing communication systems
A simple all-fiber comb filter based on the combined effect of multimode interference and Mach-Zehnder interferometer
A polarization-dependent all-fiber comb filter based on a combination effect of multimode interference and Mach-Zehnder interferometer was proposed and demonstrated. The comb filter was composed with a short section of multimode fiber (MMF) fusion spliced with a conventional single mode fiber on the one side and a short section of a different type of optical fiber on the other side. The second type of optical fiber is spliced to the MMF with a properly designed misalignment. Different types and lengths of fibers were used to investigate the influence of fiber types and lengths on the performance of the comb filter. Experimentally, several comb filters with free spectral range (FSR) values ranging from 0.236 to 1.524 nm were achieved. The extinction ratio of the comb filter can be adjusted from 6 to 11.1 dB by varying polarization states of the input light, while maintaining the FSR unchanged. The proposed comb filter has the potential to be used in optical dense wavelength division multiplexing communication systems
The energy spectrum of all-particle cosmic rays around the knee region observed with the Tibet-III air-shower array
We have already reported the first result on the all-particle spectrum around
the knee region based on data from 2000 November to 2001 October observed by
the Tibet-III air-shower array. In this paper, we present an updated result
using data set collected in the period from 2000 November through 2004 October
in a wide range over 3 decades between eV and eV, in which
the position of the knee is clearly seen at around 4 PeV. The spectral index is
-2.68 0.02(stat.) below 1PeV, while it is -3.12 0.01(stat.) above 4
PeV in the case of QGSJET+HD model, and various systematic errors are under
study now.Comment: 12 pages, 7 figures, accepted by Advances in space researc
4.5 years multi-wavelength observations of Mrk 421 during the ARGO-YBJ and Fermi common operation time
We report on the extensive multi-wavelength observations of the blazar
Markarian 421 (Mrk 421) covering radio to gamma-rays, during the 4.5 year
period of ARGO-YBJ and Fermi common operation time, from August 2008 to
February 2013. In particular, thanks to the ARGO-YBJ and Fermi data, the whole
energy range from 100 MeV to 10 TeV is covered without any gap. In the
observation period, Mrk 421 showed both low and high activity states at all
wavebands. The correlations among flux variations in different wavebands were
analyzed. Seven large flares, including five X-ray flares and two GeV gamma-ray
flares with variable durations (3-58 days), and one X-ray outburst phase were
identified and used to investigate the variation of the spectral energy
distribution with respect to a relative quiescent phase. During the outburst
phase and the seven flaring episodes, the peak energy in X-rays is observed to
increase from sub-keV to few keV. The TeV gamma-ray flux increases up to
0.9-7.2 times the flux of the Crab Nebula. The behavior of GeV gamma-rays is
found to vary depending on the flare, a feature that leads us to classify
flares into three groups according to the GeV flux variation. Finally, the
one-zone synchrotron self-Compton model was adopted to describe the emission
spectra. Two out of three groups can be satisfactorily described using injected
electrons with a power-law spectral index around 2.2, as expected from
relativistic diffuse shock acceleration, whereas the remaining group requires a
harder injected spectrum. The underlying physical mechanisms responsible for
different groups may be related to the acceleration process or to the
environment properties.Comment: 17 pages, 9 figures, 5 tables, Accepted for publication in ApJ
The cosmic ray proton plus helium energy spectrum measured by the ARGO-YBJ experiment in the energy range 3-300 TeV
The ARGO-YBJ experiment is a full-coverage air shower detector located at the
Yangbajing Cosmic Ray Observatory (Tibet, People's Republic of China, 4300 m
a.s.l.). The high altitude, combined with the full-coverage technique, allows
the detection of extensive air showers in a wide energy range and offer the
possibility of measuring the cosmic ray proton plus helium spectrum down to the
TeV region, where direct balloon/space-borne measurements are available. The
detector has been in stable data taking in its full configuration from November
2007 to February 2013. In this paper the measurement of the cosmic ray proton
plus helium energy spectrum is presented in the region 3-300 TeV by analyzing
the full collected data sample. The resulting spectral index is . These results demonstrate the possibility of performing an accurate
measurement of the spectrum of light elements with a ground based air shower
detector.Comment: 18 pages, 8 figures, preprint submitted to Phys. Rev.
The Knee of the Cosmic Hydrogen and Helium Spectrum below 1 PeV Measured by ARGO-YBJ and a Cherenkov Telescope of LHAASO
The measurement of cosmic ray energy spectra, in particular for individual
species, is an essential approach in finding their origin. Locating the "knees"
of the spectra is an important part of the approach and has yet to be achieved.
Here we report a measurement of the mixed Hydrogen and Helium spectrum using
the combination of the ARGO-YBJ experiment and of a prototype Cherenkov
telescope for the LHAASO experiment. A knee feature at 640+/-87 TeV, with a
clear steepening of the spectrum, is observed. This gives fundamental inputs to
galactic cosmic ray acceleration models
- …