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Abstract. Attribute-based encryption (ABE) is well suited for fine-
grained access control for data residing on a cloud server. However, exist-
ing approaches for user revocation are not satisfactory. In this work, we
propose a new approach which works by splitting an authorized user’s
decryption capability between the cloud and the user herself. User revo-
cation is attained by simply nullifying the decryption ability at the cloud,
requiring neither key update nor re-generation of cloud data. We propose
a concrete scheme instantiating the approach, which features lightweight
computation at the user side. This makes it possible for users to use
resource-constrained devices such as mobile phones to access cloud data.
We implement our scheme, and also empirically evaluate its performance.

1 Introduction

Data residing on a cloud storage need to be encrypted in order to safeguard their
secrecy against the untrusted cloud provider [8–10], and to serve as an access
control mechanism where a user’s decryption capability is assigned according
to the access control policy. For instance, a hospital encrypts its medical data
outsourced to a cloud storage such that a patient’s medical records are only
allowed to be decrypted by her doctors and nurses. Attribute-based encryption
(ABE) [6,12,18], has been hailed as the solution to cloud data encryption because
it enforces fine-grained access control over the decryption capabilities. Informally,
as an one-to-many encryption mechanism, ABE allows data to be encrypted with
certain policy/attributes while each decryption key is associated with certain
attributes/policy. Only when the attributes satisfy the policy can the ciphertext
be deciphered correctly by the key.

Nonetheless, user revocation remains a thorny problem in the setting of cloud
data encryption without a satisfactory solution. In the following, we review
c© Springer International Publishing Switzerland 2015
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several possible approaches to user revocation. Firstly, authentication-based
revocation used in conventional access control systems are expensive for the
cloud setting. This approach requires an extra authentication mechanism at the
user-cloud interface. It costs the user to possess extra secrets and the cloud server
is burdened with the authentication task. The second approach is key-update
based revocation as proposed in [1,19,20]. This method suffers from poor scal-
ability as all data must be re-encrypted and all remaining legitimate user keys
are to be updated or re-distributed, whose cost is tremendously high when the
data volume or the number of users scales up.

The third approach is to retrofit ABE schemes with revocation support by
assigning revocation related attributes. The ABE schemes in [6,12] propose to
include an “expiry time” attribute in the attribute set such that each decryption
key is effective only for a period of time. The shortcoming of this method is
that it does not allow for immediate revocation due to the time gap. In [16],
Ostrovsky et. al. propose negative constrains in the access policy, such that
a revocation of certain attributes amounts to negating these attributes. This
mechanism is not scalable in revoking individual users, as each encryption has
to involve information of all revoked users each of which is treated as a distinctive
attribute.

The fourth approach is key splitting [4], where an untrusted security medi-
ator holds one part of a decryption key. Once a user is revoked the mediator
immediately refuses to participate in her decryption. Although this paradigm is
suitable for the cloud setting where the cloud server plays the role as a security
mediator, it requires the underlying decryption algorithm to be homomorphic.
However, existing homomorphic encryption schemes do not allow for fine-grained
access control policies. Another downside of this approach is that it requires a
TTP (Trusted Third Party) to perform key splitting which is not suitable for
certain cloud storage applications.

In short, cloud storage applications desire an encryption mechanism with the
following two properties: (a) fine-grained access control with strong expressive-
ness to describe complex access policies; (b) scalable and efficient revocation to
instantly nullify a user’s decryption privilege without affecting legitimate users
and inflicting high cost on the cloud server. This paper presents such an encryp-
tion system for cloud storage. We first envision a general approach solving the
user revocation problem in encryption of cloud storage, with the basic idea of
splitting a user’s decryption capability between the cloud server and the user
herself, such that a full decryption requires the cloud server’s assistance. User
revocation is achieved by instructing the cloud server not to offer the needed
assistance. We then propose a concrete scheme realizing the approach, which
achieves the same level of fine-grained access control as ABE. Different from
key splitting, decryption-capability splitting does not require a TTP to know all
users’ secrets. Another feature of our scheme is the lightweight computation at
the user end, such that a user only performs power exponentiations in a regu-
lar algebraic group, though the scheme is based on bilinear mapping. We have
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implemented our scheme, and empirically tested on a smartphone where the
decryption at the user side only takes 12 ms.

Organization. In Sect. 2, we elaborate our decryption-capability splitting app-
roach for user revocation, and formulate a system model. A concrete instantia-
tion is presented in Sect. 3. Experimental results are given in Sect. 4, and Sect. 5
introduces related work. Section 6 concludes the paper.

2 Synopsis

2.1 System Setting

A data owner (denoted as Owner) uploads her data records to a cloud stor-
age server (denoted by Server). Without fully trusting the Server, the Owner
encrypts her cloud data such that data privacy is protected against the Server.
This encrypted cloud data storage is to be accessed by a group of users autho-
rized by the Owner. Data encryption enforces fine-grained access control, such
that different users have different decryption capabilities matching their respec-
tive functional roles. In particular, a user’s decryption capability is delineated
by a set of attributes according to her role. Each data encryption is associated
with an access control policy such that a user can successfully decipher the
encrypted record only if her attributes satisfy the record’s policy. Under cer-
tain circumstances, the Owner may need to revoke a user, in the sense that the
revoked user is not allowed to decipher any record in the cloud. We consider the
Server as an honest-but-curious adversary, which honestly runs the algorithms
or tasks assigned to it while attempting to attack data privacy. Figure 1 depicts
an overview of the system.

Fig. 1. An overview of the cloud storage system

2.2 Fine-Grained Access Control

To facilitate fine-grained decryption capabilities, we use “attribute” and “access
structure” utilized in [18] to describe our access control model.

Attributes. Let Λ denote the dictionary of attributes used in the system. Each
user u of the cloud storage is assigned with a set of attributes Su ⊆ Λ. The
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attribute assignment procedure is application specific which is beyond the scope
of this paper.

Policy and Access Structure. In our system, an access control policy is
expressed by a monotonic access structure which is a subset of 2Λ. In particular,
a collection A ⊂ 2Λ is monotone if ∀B,C: if B ∈ A and B ⊆ C, then C ∈
A. An access structure (respectively, monotone access structure) is a collection
(respectively, monotone collection) A of non-empty subsets of Λ. The sets in A

are called the authorized sets, and the sets not in A are called the unauthorized
sets. We restrict our attention to monotone access structures in this work.

Linear Secret-Sharing Schemes. Linear secret-sharing schemes will be used
to establish access structures. A secret-sharing scheme Π over a set S of
attributes is linear if (1) the shares for each attribute form a vector over Zp;
(2) there exists a matrix M (with � rows and n columns) called the share-
generating matrix for Π. For the ith row of M , i = 1, ..., �, we let the function ρ
define the attribute labeling row i as ρ(i). When we consider the column vector
v = (x, y2, · · · , yn), where x ∈ Zp is the secret to be shared, and y2, · · · , yn ∈ Zp

are random, then M · v is the vector of � shares of the secret x according to Π.
The share (M · v)i belongs to attribute ρ(i).

It is shown in [2] that every linear secret-sharing scheme as above also enjoys
the linear reconstruction property: Suppose that Π is a linear secret-sharing
scheme for the access structure A. Let S ∈ A be any authorized set, and let
I = {i : ρ(i) ∈ S} ⊂ {1, 2, ..., �}. Then, there exist a set of constants {ωi}i∈I such
that if {λi}i∈I are valid shares of any secret x according to Π, then

∑
i∈I ωiλi =

x. Furthermore, these constants {ωi}i∈I can be found in time polynomial in the
size of the share-generating matrix M .

2.3 Our Approach

A notable difference (in terms of data encryption) between the cloud storage
setting and the conventional PKI or group communication settings is that the
untrusted cloud server is always involved in users’ data accesses. To leverage this
fact towards addressing user revocation, we split a user’s decryption capability
between the Server and the user herself, such that decryption of encrypted cloud
record depends on the cooperation between Server and the user. Specifically, a
user’s decryption capability is rendered by a server-side key and a user-side key,
where the former is held by the Server and the latter is possessed by the user. To
manage users’ server-side keys, the Server maintains a Server-side Key list, with
each entry containing a user’s identity and her server-side key. When the user
requests a data record from cloud, the Server executes a server decryption oper-
ation over the data with the user’s server-side key, generating an intermediate
value. The intermediate value is then returned to the user, who gets the plain-
text data by a user decryption operation using her user-side key. We remark that
the pair of server-side key and user-side key are not the result of key splitting.
Therefore, our approach does not require a trusted party (i.e., the Owner in our
case) to compute the user-side key on behalf of the user.
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In line with our approach, a secure cloud storage system involves three types
of entities, the Owner, a set of users, and the Server. These entities interact with
one another in the following algorithms.

Definition 1. A secure cloud storage system (SCSS) is defined as a collection
of the following seven algorithms.

Setup(1κ) → (params,msk): Taking as input a security parameter 1κ, the
Owner executes this algorithm to set up public parameters params and a
master secret key msk. Below we assume that params is implicit in the
input of the rest algorithms, unless stated explicitly.

UsKGen(u) → (Upku, Usku): The user-side key generation algorithm takes as
input the public parameters and a user identity u, and outputs a pair of user-
side public/private keys (Upku, Usku) for u.
Each user executes this algorithm to generate a key pair for herself.

SsKGen(msk,Upku, S) → SsKu: The server-side key generation algorithm
takes as input master secret key msk, user-side public key Upku, and a set
S ⊂ Λ of attributes, and outputs a server-side key SsKu for u.
The Owner executes this algorithm to authorize a user, based on her
attributes. The server-side key SsKu will be secretly given to the Server
who then adds a new entry in the Server-side Key list LSsK , i.e., LSsK =
LSsK ∪ {u, SsKu}.

Encrypt(m,A) → c: The encryption algorithm takes as input a message m
and an access structure A, and outputs a ciphertext c by encrypting data m
under the access structure.
The Owner executes this algorithm to encrypt a data record to be uploaded
to the Server.

SDecrypt(SsKu, c) → v: The server decryption algorithm takes as input
a server-side key SsKu and a ciphertext c, and outputs an intermediate
value v.
The Server executes this algorithm to help a user decrypt a scrambled data
record requested by the user u with her server-side key.

UDecrypt(Usku, v) → m: The user decryption algorithm takes as input a user-
side private key Usku and an intermediate value v, and outputs a plaintext
m.
An authorized users executes this algorithm to obtain the desired data from
the intermediate value returned by the Server.

Revoke(u,LSsK) → LSsK \ {u, SsKu}: Taking as input a user identity u and
the Server-side Key list LSsK , the algorithm revokes u’s decryption capability
by removing her entry from LSsK , and outputs the updated LSsK = LSsK −
{u, SsKu}.
Correctness of the system requires that UDecrypt(Usku, SDecrypt

(SsKu, c)) = m if S satisfies A, for all (Upku, Usku) ← UsKGen(u), SsKu ←
SsKGen(msk,Upku, S) and c ← Encrypt(m,A), where (params,msk) ←
Setup(1κ).
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Caveat. To highlight the distinction between decryption-capability splitting and
key splitting syntactically, we point out that for the latter, the UsKGen algorithm
and the SsKGen algorithm above could be combined into a single algorithm which
is to be executed by the same entity (i.e., the Owner in our case).

Security Requirements. Below we explain the intuitions of three security
requirements imposed upon the system, while the formulations are deferred to
Appendix A.

Data Privacy Against Cloud. In our adversarial model, the Server is an honest-
but-curious adversary. It stores the Owner’s data and performs server decryptions
to serve users’ accesses by applying the corresponding server-side keys. It man-
dates that the Server cannot learn any semantic information about the data in
the storage, but it should behave honestly in terms of managing cloud data,
processing user access requests, and other administrative activities.

Data Privacy Against Users. It mandates that a user cannot obtain data beyond
the authorized access rights stipulated by the Owner. In particular, the collu-
sion between a set of malicious users does not yield new decryption capabilities
beyond those privileges assigned to those users.

User Revocation Support. When a user’s decryption capability is revoked, she
is no long able to decipher the encrypted data on the storage. In other words,
without the assistance of the Server, no user can decipher the encrypted data by
herself, even when her attributes satisfy the policy attached to the ciphertext.

3 A Concrete Instantiation

In this section, we present a concrete instantiation of the above approach and
algorithms. Of particular interest of our scheme is the computation efficiency at
the user side, i.e., the user decryption algorithm UDecrypt only involves exponen-
tiation operations in regular algebraic groups, while the scheme itself is based on
bilinear mapping. This makes it possible for users to use resource-constrained
device such as mobile phone to access the cloud data. This is one of the fea-
tures that distinguish our scheme from all other proposals on using ABE for
encryption of cloud data, e.g., those reviewed in Sect. 5.

3.1 Construction Details

Our construction is based on the scheme in [18], which is proved secure under the
decisional q-BDHE assumption. The main trick we have rests with the generation
of a user’s server-side key, such that an ABE ciphertext can be transformed into
one under the user’s (standard) public key.

Let s ∈R S denote an element s randomly drawn from a set S. The details
of our scheme are as follows.

Setup(1κ) → (params,msk): On input a security parameter 1κ, the setup
algorithm
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– determines a bilinear map e : G0 × G0 → G1, where G0 and G1 are cyclic
multiplicative groups of κ-bit prime order p.

– selects random exponents z, a ∈ Zp, and a generator g of G0.
– chooses a cryptographic hash function H : {0, 1}∗ → G0.
– decides a standard public key encryption scheme. Below we use Enc(·, ·) to

denote both the description of the scheme and its encryption function.
– sets params = (g, e(g, g)z, ga,H,Enc), and msk = gz.

UsKGen(u) → (Upku, Usku): On input a user identity u, the user-side key
generation algorithm outputs a public/private key pair (Upku, Usku) for Enc.

SsKGen(msk,Upku, S) → SsKu: On input master secret key msk = gz, a user
public key Upku, and a set of attributes S, the server-side key generation
algorithm picks α, t ∈R Zp, and sets the server-side key SsKu for u as

SsKu =
(
K = gzαgat,K ′ = Enc(Upku, α), L = gt,

{∀s ∈ S : Ks = H(s)t}
)
,

where Enc(Upku, α) denotes encryption of α by Enc under Upku.
Encrypt(m,A) → c: Taking as input a message m, and an access structure

A = (M,ρ), and implicitly params, the encryption algorithm proceeds as
follows.
We limit ρ to be injective function, i.e., an attribute is associated with at
most one row of M . Let M be an � × n matrix. It first selects a random
column vector v = (x, y2, . . . , yn) ∈ Zn

p , which will be used to secret-share
the exponent x. Calculates λi = Mi · v, i = 1 to �, where Mi denotes the ith

row of M . Sets the ciphertext c as

c = (C = m · e(g, g)zx, C ′ = gx, {∀i ∈ [1 · ·l] : Ci = gaλiH(ρ(i))−x}, (M,ρ))

SDecrypt(SsKu, c) → v: On input a server-side key SsKu associating with
a set of attributes S, and a ciphertext c under access structure (M,ρ), the
server decryption algorithm outputs an intermediate value v if S satisfies the
access structure, or ⊥ otherwise. Suppose S satisfies the access structure and
I = {i : ρ(i) ∈ S} ⊂ {1, 2, · · · , �}. Then, let {ωi}i∈I be a set of constants such
that if {λi} are valid shares of a secret x according to M , then

∑
i∈I ωiλi = x.

Note that it suffices to determine {ωi}i∈I based on M and I. The algorithm
first computes

e(C ′,K)
∏

i∈I(e(Ci, L)e(C ′,Kρ(i)))ωi

=
e(gx, gzαgat)

∏
i∈I(e(gaλiH(ρ(i))−x, gt)e(gx,H(ρ(i))t))ωi

=
e(g, g)xzαe(g, g)xat

∏
i∈I(e(g, g)aλite(H(ρ(i)), g)−xte(g,H(ρ(i)))xt)ωi

=
e(g, g)xzαe(g, g)xat

∏
i∈I e(g, g)aλitωi

= e(g, g)xzα.
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Then, sets v as

v = (V1, V2, V3)
= (C = m · e(g, g)zx, e(g, g)xzα,K ′ = Enc(Upku, α))

UDecrypt(Usku, v) → m: On input a user-side private key Usku and an inter-
mediate value v resulting from the server decryption algorithm with u’s
server-side key, the user decryption algorithm works as follows. Recall that
v = (V1 = m · e(g, g)zx, V2 = e(g, g)xzα, v3 = Enc(Upku, α)). Decryption is
straightforward, by decrypting V3 using Usku to get α, and then computing
e(g, g)xz = (V2)1/α and finally getting m = V1/e(g, g)xz.

Revoke(u,LSsK) → LSsK \ {u, SsKu}: On input of a user identity u and
the Server-side Key list LSsK , the entry corresponding to u is removed from
LSsK . Depending on applications, either the Server updates LSsK instructed
by the Owner, or an interface is provided to the Owner so that he does the
deletion.

Correctness. Correctness of the construction is easily verified, so we do not
elaborate.

Performance. The bit length of the intermediate value v returned by the
SDecrypt algorithm is 2|G1| + |Enc(·)|, independent of the complexity of the
encryption access policy (represented by the total number of rows of the share-
generating matrix). So is the computation overhead of the UDecrypt algorithm,
which consists mainly of a decryption operation of a standard public key encryp-
tion scheme and a power exponentiation in G1. This means that no pairing oper-
ation is involved at the user side, although the scheme bases itself on bilinear
mapping and enjoys the fine grained encryption/decryption capabilities compa-
rable to the ABE schemes in [6,18].

3.2 Security Analysis

Security of our scheme is reduced to the decisional q-Bilinear Diffie-Hellman
Exponnet (q-BDHE) assumption defined in [18].

Assumption 1 [Decisional q-BDHE Assumption]. Let G0 be a group of prime
order p. Let a, x ∈ Zp be randomly chosen, and g be a generator of G0. Let
v = (g, gx, ga, ga2

, ga3
, · · · , gaq

, gaq+2
, · · · , ga2q

). The decisional q-BDHE
assumption holds if for any PPT adversary A and Z ∈R G0,

|Pr[A(v, gax(q+1)
) = 1] − Pr[A(v, Z) = 1]| < ν

where ν is a negligible function, and the the probability is taken over the random
choice of a, x ∈ Zp, Z ∈ G1, and of the random coins of A.

We have the following theorem, regarding data privacy and user revocation
support of our scheme, and the security proof can be found in Appendix B.
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Theorem 1. The above scheme achieves data privacy and user revocation sup-
port (specified in Definitions 2 and 3), if the decisional q-BDHE assumption
holds, the standard public key encryption Enc is semantically secure, and H(·)
is a random oracle.

4 Experimental Results

To gauge its performance, we have implemented and experimented with our
proposed scheme. The implementation is coded in Java, and the cryptographic
algorithms are implemented based on the Bouncy Castle Java Crypto Library1.
We instantiated the bilinear map in the scheme with a 512-bit supersingular
curve with embedding degree 2.

4.1 Experimental Results

Cost in Cloud and Owner. In our scheme, the computation costs of both Encrypt
and SDecrypt are dependent on the complexity of the access control policy, linear
to the number of rows of the share-generating matrix. These costs constitute the
most demanding part of our construction.

To empirically evaluate the computational costs of the Encrypt and SDecrypt
algorithms (while avoiding compounding factors such as network latency, insta-
bility of on-demand computing, etc.), we run these algorithms on a PC with
2.66 GHz Intel Core2Duo and 3.25 GB RAM. We experiment them with a set of
access structures, whose share-generating matrixes are of � rows and � columns.
Access structures in such a form ensure that all involved attributes are used in
the SDecrypt algorithm, thus imposing the heaviest workload. We repeat each
experiment for 100 times and calculate the average. The experimental results
are shown in Fig. 2, which displays the time of the two algorithms with respect
to the number of attributes (i.e., the number of rows of the share-generating
matrix).

As evident from the figure, the results corroborate the fact that both algo-
rithms perform linear computations with the number of attributes. Note that
the cost of SDecrypt with 60 attributes is about 1.7 s. This performance should
be acceptable for practical applications, since 50–60 attributes should suffice for
specifying access control policies based on functional roles.

Cost in User End. We have also implemented and tested the UDecrypt algo-
rithm of our scheme on an HTC HD2 smartphone, which is configured with a
1 GHz Scorpion CPU and 448 MB RAM. We instantiate the standard public-key
encryption scheme Enc associated with the user-side public/private key pair by
the ElGamal-type encryption in G0, i.e., (Upku, Usku) = (gxu , xu ∈ Z∗

p ). The
experimental results indicate that on average, it takes about 12 ms to decrypt
a ciphertext of the form (m · e(g, g)zx, e(g, g)xzα, Enc(Upku, α)). On the other
hand, the communication overhead for the user is 2|G1|+2|G0|, about 1.5 Kbits
in our implementation. These results suggest that it is affordable for a user to
access the cloud storage using a low-end device like a smartphone.
1 http://www.bouncycastle.org/java.html.

http://www.bouncycastle.org/java.html
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Fig. 2. Experimental results

5 Related Work

This section provides an overview of the related work on encryption of cloud
data and user revocation, respectively.

Encryption of Cloud Data with ABE. Among many proposals on enforce-
ment of cryptographic access control upon cloud data with encryption, we focus
on those using ABE and PRE. The proposal by Yu et al. applies KP-ABE for
encryption of cloud data to achieve fine-grained data sharing [20]. For user revo-
cation support, they suggest adopting the specific technique of PRE scheme [3]
to update users’ decryption keys. The advantage is that the cloud is entrusted
to taking the majority of the workload for re-generation of cloud data and re-
distribution of new keys. While their scheme improves considerably over the
trivial solution, i.e., the Owner is fully responsible for data re-generation and
key re-distribution, it is always preferable not to burden the cloud if possible. In
addition, their scheme requires the cloud to maintain user revocation information
for legitimate users to gradually complete key update. Our decryption-capability
splitting approach avoids these problems and the overhead incurred due to user
revocation is minor.

Wang et al. achieve hierarchical attribute-based encryption for cloud storage,
by augmenting CP-ABE with hierarchical identity-based encryption [19]. Hierar-
chical attribute-based encryption could cope with more complicated application
requirements, but for user revocation, their scheme is similar to [20]. The pro-
posal by Liu et al. also aims at hierarchical attribute-set-based encryption for
cloud storage [15], and its approach for user revocation is the “expiry time”
mechanism.

As a final note, our proposed scheme distinguishes itself from all the above
work because the computation at the user side is lightweight, independent of the
complexity of the access control policy of the underlying ABE scheme.

Key-Split Cryptography. We realize that the idea of splitting key for revo-
cation of cryptographic capabilities is not new. Boneh et al. propose “mediated
RSA” to split the private key of RSA into two shares, such that one share is
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delegated to an online “mediator” and the other is given to the user [4]. As RSA
decryption and signing require the engagement of both parties, the user’s crypto-
graphic capabilities are immediately revoked if the mediator does not cooperate.
Our approach for user revocation follows a similar rationale, but it is more pre-
cisely split of decryption capability (rather than simply split of key). A technical
difference resulting from this distinction is that the party responsible for key
split knows both shares, but the party in charge of capability split does not
necessarily know both shares, i.e. in our scheme, the Owner does not learn users’
private keys.

A broader class of cryptographic primitives related to key split is threshold
cryptography, e.g., [13,17]. A threshold cryptosystem works by splitting a private
key among n parties, in a way that any t out of n parties together can decrypt
or sign. Threshold cryptography is by no means designed for user revocation
purposes; rather, it is intended to work in a distributed environment where
individual parties are restricted from abusing cryptographic capabilities.

The recent work by Green et al. [11] proposes delegating the bulk of decryp-
tion overhead of ABE to a powerful proxy server in order to mitigate the burden
at the user side. As a result, the user only performs a standard ElGamal decryp-
tion operation (similar to ours). While their constructions are not intended for
user revocation, they can be directly used to instantiate our approach, but result-
ing in a scheme of key splitting. In contrast, our scheme implements decryption-
capability splitting with the advantage that users do not need to disclose their
secret keys to the Owner.

6 Conclusions

A main issue to be addressed when using ABE for encryption of cloud storage
is user revocation. In this work we proposed a decryption-capability splitting
approach for user revocation, which is advantageous over existing solutions. A
user’s decryption capability is split between the cloud and the user herself, such
that user revocation is achieved by simply invalidating the cloud’s decryption
ability. As a result, neither key update nor re-generation of cloud data is required.
We further proposed a concrete scheme instantiating the approach, which is
featured with lightweight computation at the user side such that users can use
resource-constrained devices to access cloud data.
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Management University through the research grant MSS12C004 from the Ministry
of Education Academic Research Fund Tier 1.

A Formulation of Security Notions

The definitional model for data privacy against cloud is captured in the following
game between a challenger managing a SCSS system and an adversary who wants
to break the system.
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Definition 2 [Data Privacy Against Cloud]. A secure cloud storage system
(SCSS) satisfies data privacy against cloud if for any PPT adversary, the prob-
ability of the following game returns 1 is 1/2 + ν(κ), where ν(.) is a negligible
function.

Setup. The challenger runs the Setup algorithm and gives the public parameters
params to the adversary.

Phase 1. The adversary makes repeated queries to the server-side key generation
oracle by submitting sets of attributes S1, ..., Sq1 . For each query, the challenger
first runs the UsKGen algorithm to get a user-side public/private key pair; with
the user-side public key and the attribute set Si, the challenger then runs the
SsKGen algorithm to get a server-side key; the challenger returns the server-
side key together with the user-side public key to the adversary.

Challenge. The adversary submits two equal length messages m0 and m1,
together with a challenge access structure A∗. The challenger flips a random
coin b, runs the Encrypt algorithm on mb and A∗, and returns the ciphertext c∗

to the adversary.

Phase 2. Phase 1 is repeated.

Guess. The adversary outputs a guess b′ on b. If b′ = b, then the challenger
returns 1; otherwise returns 0.

The formulation of data privacy against authorized users and of user revoca-
tion support bases on the same fact that without an appropriate server-side key,
a user cannot decrypt even with her user private key. Following is the formal
security model.

Definition 3 [Data Privacy against Users & Revocation Support]. A secure
cloud storage system (SCSS) satisfies data privacy against users and user revo-
cation support if for any PPT adversary, the probability of the following game
returns 1 is 1/2 + ν(κ), where ν(.) is a negligible function.

Init. The adversary declares the access structure A∗ he wants to be challenged
upon.

Setup. The challenger runs the Setup algorithm and returns the public parame-
ters params to the adversary.

Phase 1. The adversary makes repeated queries to the user-side key genera-
tion oracle (UsKGen), and the server-side key generation oracle (SsKGen). For
the former, the challenger returns the resulting user-side key (both public and
private) to the adversary; for the latter, the adversary submits sets of attributes
S1, ..., Sq1 with the restriction that each Si does not satisfy A∗, and the challenger
returns the resulting server-side key to the adversary.

Challenge. The adversary submits two equal length messages m0 and m1,
together with the challenge access structure A∗. The challenger flips a random
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coin b, runs the Encrypt algorithm on mb and A∗, and returns the ciphertext c∗

to the adversary.

Phase 2. Phase 1 is repeated.

Guess. The adversary outputs a guess b′ on b. If b′ = b, then the challenger
returns 1; otherwise returns 0.

We stress that giving the server-side keys to the adversary models authorized
users’s ability to get intermediate values from the Server (who uses the server-
side keys). Intuitively, user revocation support (in which case the adversary does
not have any server-side key) is implied by the fact the adversary even cannot
decrypt the challenge ciphertext without appropriate server-side keys.

B Security Proof for Theorem1

Proof. We prove that our scheme satisfies Definitions 2 and 3, respectively.

Satisfying Definition 2. The proof is much simpler than in [18], due to the use of
semantically secure public-key encryption Enc, and the fact that the adversary
does not have the private key. Satisfaction of Definition 2 is actually based on
the DBDH (Decisional Bilinear Hiffie-Hellman) assumption, which states that
it is infeasible to distinguish between (g ∈ G0, g

c, gd, gx, e(g, g)cdx ∈ G1) and
(g, gc, gd, gx, Z ∈R G1). The DBDH assumption clearly is weaker than the deci-
sional q-BDHE assumption.

Suppose we have an adversary A with non-negligible advantage AdvA in the
game of Definition 2 against our scheme. We build a challenger C breaking the
DBDH assumption. Details follow.

Setup. The challenger takes in the DBDH challenge (g, gc, gd, gx, Z). The chal-
lenger implicitly sets z = cd by setting e(g, g)z = e(gc, gd), and selects a random
number in G0 as ga. In addition, the challenger programs the random oracle
H by building a table as follows. Consider a call to H(s). If H(s) was already
defined in the table, then simply return the same answer as before; otherwise,
select a random value τs ∈ Zp and define H(s) = gτs .

Phase 1. The challenger answers server-side key generation queries from the
adversary. For a query, the challenger first generates a public/private key pair
for Enc by executing UsKGen; then chooses z′, t ∈R Zp and a random K ′ from
the range of Enc, and computes K = gz′

gat, L = gt,∀s ∈ S : Ks = gτst. We
argue that the distribution of the simulated key (K,K ′, L, {Ks}) so generated
is computationally indistinguishable from the actual server-side key. First, due
to the semantic security of Enc, the randomly chosen K ′ is indistinguishable
from Enc(α) in the actual key. Second, conditioned on the random K ′ replacing
Enc(α), the gzα in the actual K is no different from gz′

for a random z′. Our
argument thus holds.

Challenge. The challenger builds the challenge ciphertext. The challenger flips
a coin b. Then it computes C = mbZ, and sets C ′ = gx. Suppose the challenge
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access structure is A∗ = (M∗, ρ∗), where the share-generating matrix M∗ has �∗

rows. The challenger computes the shares {λi} as usual according to M∗, and
then computes ∀i = 1, · · · , �∗, Ci = gaλi(gx)τρ∗(i) .

Phase 2. Same as Phase 1.

Guess. The adversary outputs a guess b′ of b. If b = b′ then the challenger
outputs 1 to indicate that Z = e(g, g)cdx; otherwise, it outputs 0 to indicate
that Z is a random element in G1.

When Z = e(g, g)cdx, then the above simulation by the challenger C for
the challenge ciphertext is perfect. Thus we have Pr[C(g, gc, gd, gx, gcdx) = 1] =
Pr[b′ = b] = 1/2 + AdvA. On the other hand, if Z is random number in G1,
then mb in the challenge ciphertext of the above simulation is completely hidden
from the adversary. Thus we have Pr[C(g, gc, gd, gx, T ) = 1] = Pr[b′ = b] = 1/2.
Combined, we get |Pr[C(g, gc, gd, gx, gcdx) = 1] − Pr[C(g, gc, gd, gx, T ) = 1]| =
AdvA. This completes the proof.

Satisfying Definition 3. We prove this by presenting a reduction from Waters’
scheme which is proved secure under the decisional q-BDHE assumption in [18] to
ours. To this end, we first point out that the main differences between our scheme
and Waters’ that are relevant to the proof here are the format of the server-side
key in our scheme and of the private key in Waters’ scheme. In Waters’ scheme,
the format of a private key is (K = gzgat, L = gt, {∀s ∈ S : Ks = H(s)t}).
Bearing this difference in mind, we build an adversary B against Waters’ scheme,
given an adversary A of our scheme. Details follow.

B acts as the challenger in the game in Definition 3.

Init. A declares a challenge access structure A∗ to B, who then declares A∗ to
the challenger of Waters’ scheme.

Setup. B takes in the public parameters of a Waters’ scheme, and gives them
to A. B also determines a standard public-key encryption scheme Enc and gives
the description to A.

Phase 1. B answers user-side key generation and server-side key generation
queries from A. To answer a user-side key generation query, B simply generates a
public/private key pair according to Enc. To answer a server-side key generation
query on a set S of attributes and a user public key Upk, B submits a key
generation (KeyGen) query to the challenger of Waters’ scheme with S (if S does
not satisfy A∗), and as a response B is returned a key of the form (K = gzgat, L =
gt, {∀s ∈ S : Ks = H(s)t}). Then B selects α ∈R Zp, and computes Enc(Upk, α)
and sets the server-side key as (Kα,Enc(Upk, α), Lα, {∀s ∈ S : Kα

s }). It can
easily see that the resulting server-side key is valid with respect to our scheme.

Challenge. B builds a challenge ciphertext under A∗, given m0,m1 from A.
To this end, B submits m0 and m1 to the challenger of Waters’ scheme as a
challenge, and gets back a challenge ciphertext c∗. B returns c∗ as the challenge
ciphertext to A.

Phase 2. Same as Phase 1.
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Guess. A outputs a guess b′, which is also used by B as the guess to the chal-
lenger of Waters’ scheme. It is easily seen that the simulation by B is perfect,
and the advantage of B is at least that of A. This completes the proof. �
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