396 research outputs found

    Recent advances and current issues in single-cell sequencing of tumors

    Get PDF
    AbstractIntratumoral heterogeneity is a recently recognized but important feature of cancer that underlies the various biocharacteristics of cancer tissues. The advent of next-generation sequencing technologies has facilitated large scale capture of genomic data, while the recent development of single-cell sequencing has allowed for more in-depth studies into the complex molecular mechanisms of intratumoral heterogeneity. In this review, the recent advances and current challenges in single-cell sequencing methodologies are discussed, highlighting the potential power of these data to provide insights into oncological processes, from tumorigenesis through progression to metastasis and therapy resistance

    ηQ\eta_{Q} meson photoproduction in ultrarelativistic heavy ion collisions

    Get PDF
    The transverse momentum distributions for inclusive ηc,b\eta_{c,b} meson described by gluon-gluon interactions from photoproduction processes in relativistic heavy ion collisions are calculated. We considered the color singlet (CS) and color octet (CO) components with the framework of non-relativistic Quantum Chromodynamics (NRQCD) into the production of heavy quarkonium. The phenomenological values of the matrix elements for the color-singlet and color-octet components give the main contribution to the production of heavy quarkonium from the gluon-gluon interaction caused by the emission of additional gluon in the initial state. The numerical results indicate that the contribution of photoproduction processes cannot be negligible for mid-rapidity in p-p and Pb-Pb collisions at the Large Hadron Collider (LHC) energies.Comment: 11 pages, 2 figure

    Source attack of decoy-state quantum key distribution using phase information

    Get PDF
    Quantum key distribution (QKD) utilizes the laws of quantum mechanics to achieve information-theoretically secure key generation. This field is now approaching the stage of commercialization, but many practical QKD systems still suffer from security loopholes due to imperfect devices. In fact, practical attacks have successfully been demonstrated. Fortunately, most of them only exploit detection-side loopholes which are now closed by the recent idea of measurement-device-independent QKD. On the other hand, little attention is paid to the source which may still leave QKD systems insecure. In this work, we propose and demonstrate an attack that exploits a source-side loophole existing in qubit-based QKD systems using a weak coherent state source and decoy states. Specifically, by implementing a linear-optics unambiguous-state-discrimination measurement, we show that the security of a system without phase randomization --- which is a step assumed in conventional security analyses but sometimes neglected in practice --- can be compromised. We conclude that implementing phase randomization is essential to the security of decoy-state QKD systems under current security analyses.Comment: 12 pages, 5 figure

    Profiling alternatively spliced mRNA isoforms for prostate cancer classification

    Get PDF
    BACKGROUND: Prostate cancer is one of the leading causes of cancer illness and death among men in the United States and world wide. There is an urgent need to discover good biomarkers for early clinical diagnosis and treatment. Previously, we developed an exon-junction microarray-based assay and profiled 1532 mRNA splice isoforms from 364 potential prostate cancer related genes in 38 prostate tissues. Here, we investigate the advantage of using splice isoforms, which couple transcriptional and splicing regulation, for cancer classification. RESULTS: As many as 464 splice isoforms from more than 200 genes are differentially regulated in tumors at a false discovery rate (FDR) of 0.05. Remarkably, about 30% of genes have isoforms that are called significant but do not exhibit differential expression at the overall mRNA level. A support vector machine (SVM) classifier trained on 128 signature isoforms can correctly predict 92% of the cases, which outperforms the classifier using overall mRNA abundance by about 5%. It is also observed that the classification performance can be improved using multivariate variable selection methods, which take correlation among variables into account. CONCLUSION: These results demonstrate that profiling of splice isoforms is able to provide unique and important information which cannot be detected by conventional microarrays

    从医师素质培养视角看中医院文化环境建设

    Get PDF
    The hospitals of Traditional Chinese Medicine (TCM) are the place to apply TCM to do clinical practice. The cultural environment of TCM hospitals should be constructed on the basis of TCM culture. The most important way of cultural environment construction is to cultivate and elevate the physicians’ quality education. The paper holds that the physicians in TCM hospitals should be benevolent, erudite, full of affinity, calm and equanimity.中医院是充分体现和发挥中医药临床优势的场所,中医院文化环境建设当以博大精深的中医药文化为底蕴,居于临床一线的医师是传播中医药文化的主要载体,医师素质培养与提高是建设中医院文化环境的重要途径。中医药文化是我国优秀传统文化的杰出代表,师承相传的中医教育更注重医师全方位素质的培养,一名优秀的临床中医师应当具备仁爱为本、博学广识、亲切细致、沉稳镇定的人文素质,成为建设医院文化环境的中坚力量

    Preprocessing and Quality Control Strategies for Illumina DASL Assay-Based Brain Gene Expression Studies with Semi-Degraded Samples

    Get PDF
    Available statistical preprocessing or quality control analysis tools for gene expression microarray datasets are known to greatly affect downstream data analysis, especially when degraded samples, unique tissue samples, or novel expression assays are used. It is therefore important to assess the validity and impact of the assumptions built in to preprocessing schemes for a dataset. We developed and assessed a data preprocessing strategy for use with the Illumina DASL-based gene expression assay with partially degraded postmortem prefrontal cortex samples. The samples were obtained from individuals with autism as part of an investigation of the pathogenic factors contributing to autism. Using statistical analysis methods and metrics such as those associated with multivariate distance matrix regression and mean inter-array correlation, we developed a DASL-based assay gene expression preprocessing pipeline to accommodate and detect problems with microarray-based gene expression values obtained with degraded brain samples. Key steps in the pipeline included outlier exclusion, data transformation and normalization, and batch effect and covariate corrections. Our goal was to produce a clean dataset for subsequent downstream differential expression analysis. We ultimately settled on available transformation and normalization algorithms in the R/Bioconductor package lumi based on an assessment of their use in various combinations. A log2-transformed, quantile-normalized, and batch and seizure-corrected procedure was likely the most appropriate for our data. We empirically tested different components of our proposed preprocessing strategy and believe that our results suggest that a preprocessing strategy that effectively identifies outliers, normalizes the data, and corrects for batch effects can be applied to all studies, even those pursued with degraded samples
    corecore