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The transverse momentum distributions for inclusive 𝜂𝑐,𝑏 meson described by gluon-gluon interactions from photoproduction
processes in relativistic heavy ion collisions are calculated. We considered the color-singlet (CS) and color-octet (CO) components
within the framework of Nonrelativistic Quantum Chromodynamics (NRQCD) in the production of heavy quarkonium. The
phenomenological values of thematrix elements for the color-singlet and color-octet components give themain contribution to the
production of heavy quarkonium from the gluon-gluon interaction caused by the emission of additional gluon in the initial state.
The numerical results indicate that the contribution of photoproduction processes cannot be negligible for midrapidity in p-p and
Pb-Pb collisions at the Large Hadron Collider (LHC) energies.

1. Introduction

Heavy quarkonium is amultiscale systemwhich can probe all
regimes of Quantum Chromodynamics (QCD) and present
an ideal laboratory for testing the interplay between perturba-
tive and nonperturbative QCD within a controlled environ-
ment. In recent years, many measurement reports have been
published by ALICE collaboration [1, 2], CMS collaboration
[3, 4], ATLAS collaboration [5, 6], and LHCb collaboration
[7, 8] at the Large Hadron Collider (LHC) energies; several
theoretical approaches have been proposed such as the
color-singlet (CS) mechanism [9, 10], the color-octet (CO)
mechanism [11, 12], the color evaporationmechanism [13, 14],
the color-dipole mechanism [15–18], the mixed heavy-quark
hybrids mechanism [19], the recombinationmechanism [20–
24], the photoproduction mechanism [25–31], the poten-
tial Nonrelativistic Quantum Chromodynamics (pNRQCD)
approach [32–34], the transverse-momentum-dependent
factorization approach [35], the transport approach [36–41],

the 𝑘𝑇-factorization approach [42–45], the fragmentation
approach [46–52], and the Nonrelativistic Quantum Chro-
modynamics (NRQCD) approach [53–67]. Among them, the
NRQCD approach, which takes into account contributions
of color-singlet component and color-octet components with
the nonperturbative long-distance matrix elements (LDME),
is themost successful in phenomenological studies.The long-
distancematrix elements are process-independent and can be
classified in terms of the relative velocity for the heavy quarks
in the bound state. But, the heavy quarkonium production
mechanism is still not fully understood.

In this study, we extend the hard photoproduction
mechanism [68] to the heavy quarkonium production and
investigate the production of inclusive 𝜂𝑐,𝑏 meson in p-p
and Pb-Pb collisions at the LHC. According to [69], the
light 𝑞𝑞 contributions for heavy quarkonium production are
negligible; therefore in this work we only consider the con-
tributions of gluon-gluon processes caused by the emission
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of additional gluons, which is different from our previous
work [26] based on the method developed in [70, 71]. In
high energy collisions, the partons from the nucleus can
emit high energy photons that can fluctuate into gluons and
then interact with the partons of the other nucleus. Hence
we consider that the hard photoproduction processes of a
charged parton of the incident nucleon can emit a high energy
photon in high energy nucleus-nucleus collisions.

The paper is organized as follows. In Section 2 we present
the photoproduction of inclusive 𝜂𝑐,𝑏 from gluon-gluon
interactions at LHC. The numerical results for large-𝑝𝑇 𝜂𝑐,𝑏
meson production in p-p collisions and Pb-Pb collisions at
LHC are given in Section 3. Finally, the conclusion is given in
Section 4.

2. General Formalism

In relativistic heavy ion collisions, the production of 𝜂𝑄
mesons by the gluon-gluon (g-g) processes from the initial
parton interaction can be divided into three processes: direct
g-g processes, semielastic resolved photoproduction, and
inelastic resolved photoproduction processes.

In direct processes, the parton (gluon) 𝑎 of the incident
nucleus𝐴 interacts with the parton (gluon) 𝑏 of another inci-
dent nucleus 𝐵 by the interaction of 𝑔𝑔 → 𝜂𝑐𝑔. The invariant
cross section of large-𝑝𝑇 𝜂𝑄 meson of the process (𝐴 + 𝐵 →𝜂𝑄 + 𝑋) is described in the pQCD parton model on the basis
of the factorization theorem and can be written as

𝑑𝜎𝐿𝑂𝐴𝐵→𝜂𝑄𝑋𝑑𝑝2𝑇𝑑𝑦 = ∫𝑑𝑥𝑎𝑓𝑔/𝐴 (𝑥𝑎, 𝑄2) 𝑓𝑔/𝐵 (𝑥𝑏, 𝑄2)
⋅ 𝑥𝑎𝑥𝑏𝑥𝑎 − 𝑥1

𝑑𝜎̂
𝑑𝑡̂ (𝑔𝑔 󳨀→ 𝜂𝑄𝑔) ,

(1)

where the variables 𝑥𝑎 and 𝑥𝑏 = (𝑥𝑎𝑥2 − 𝜏)/(𝑥𝑎 − 𝑥1) are
the momentum fractions of the partons, 𝑧𝑐 is the momentum
fraction of the final charmed-meson, 𝑥1 = (1/2)(𝑥2𝑇 +4𝜏)1/2 exp(𝑦), 𝑥2 = (1/2)(𝑥2𝑇 + 4𝜏)1/2 exp(−𝑦), 𝑥𝑇 = 2𝑝𝑇/√𝑠,𝜏 = (𝑀/√𝑠)2, and𝑀 is the mass of the 𝜂𝑄 meson; 𝑓𝑔/𝐴(𝑥𝑎,𝑄2) and 𝑓𝑔/𝐵(𝑥𝑏, 𝑄2) are the parton distribution functions
(PDF) for the colliding partons 𝑎 and 𝑏 carrying fractional
momenta 𝑥𝑎 and 𝑥𝑏 in the interacting nucleons [72]:

𝑓𝑔/𝐴 (𝑥, 𝑄2) = 𝑅𝐴 (𝑥, 𝑄2) 𝑓𝑔 (𝑥, 𝑄2) , (2)

where 𝑅𝐴(𝑥, 𝑄2) is the nuclear modification factor [73] and𝑓𝑔(𝑥, 𝑄2) is the gluon distribution function of nucleon.
According to NRQCD scaling rules [74, 75], the color-

singlet as well as 𝑆-wave and 𝑃-wave color-octet components
give the main contributions to the production process under
consideration [76]:

𝑑𝜎̂
𝑑𝑡̂ (𝑔𝑔 󳨀→ 𝜂𝑄𝑔)
= |𝑅 (0)|2 𝑑𝜎̂𝑑𝑡̂ (𝑔𝑔 󳨀→ 𝑄𝑄[1𝑆[1]0 𝑔])

+ ⟨𝑂𝑆⟩ 𝑑𝜎̂𝑑𝑡̂ (𝑔𝑔 󳨀→ 𝑄𝑄[3𝑆[8]1 𝑔])
+ ⟨𝑂𝑃⟩ 𝑑𝜎̂𝑑𝑡̂ (𝑔𝑔 󳨀→ 𝑄𝑄[1𝑃[8]1 𝑔]) .

(3)

The subprocesses cross section of [1𝑆[1]0 ], [3𝑆[8]1 ], and [1𝑃[8]1 ]
state are, respectively, given by [77, 78]

𝑑𝜎̂
𝑑𝑡̂ (𝑔𝑔 󳨀→ 𝑄𝑄[1𝑆[1]0 ] 𝑔) =

𝜋𝛼3𝑠𝑠2𝑀
⋅ 𝑃2
𝑄 (𝑄 −𝑀2𝑃)2 [(𝑃 −𝑀

4)2 + 2𝑀2𝑄] ,
𝑑𝜎̂
𝑑𝑡̂ (𝑔𝑔 󳨀→ 𝑄𝑄[3𝑆[8]1 ] 𝑔) =

𝜋𝛼3𝑠3𝑀𝑠2
⋅ (𝑃2 −𝑀2𝑄) (19𝑀4 − 27𝑃)𝑀2 (𝑄 −𝑀2𝑃)2 ,

𝑑𝜎̂
𝑑𝑡̂ (𝑔𝑔 󳨀→ 𝑄𝑄[1𝑃[8]1 ] 𝑔) =

2𝜋𝛼3𝑠𝑀3𝑠2
⋅ 1
𝑄 (𝑄 −𝑀2𝑃)3 [179𝑀

4𝑄3 + 217𝑀10𝑄2

− 27𝑀2𝑃5 + 54𝑀6𝑃4 − 27𝑀10𝑃3 + 135𝑃𝑄3
+ 103𝑀2𝑃2𝑄2 − 212𝑀6𝑃𝑄2 − 124𝑀8𝑃2𝑄
+ 43𝑀12𝑃𝑄 + 27𝑃4𝑄] ,

(4)

where𝑀2 = 𝑠 + 𝑡̂ + 𝑢̂, 𝑃 = 𝑠𝑡̂ + 𝑡̂𝑢̂ + 𝑢̂𝑠, and 𝑄 = 𝑠𝑡̂𝑢̂. Here𝑠, 𝑡̂, and 𝑢̂ are the Mandelstam variables. 𝑅(0) = [𝑀2𝐻Γ(𝐻 →𝑒+𝑒−)/4𝛼2𝑒2𝑄]1/2 is the wave function value of 𝜂𝑄 meson for
the color-singlet state at the origin [79–84], where𝑀𝐻 ≈ 2𝑚𝑄
is themass of the heavy-quark pairs.The LDMEs of the color-
octet components are used as follows:

⟨𝑂𝑆⟩ = ⟨𝑅𝜂𝑄 [3𝑆(8)1 ]⟩ = 𝜋6 ⟨0 󵄨󵄨󵄨󵄨󵄨𝑂𝜂𝑄8 [3𝑆1]󵄨󵄨󵄨󵄨󵄨 0⟩ ,
⟨𝑂𝑃⟩ = ⟨𝑅𝜂𝑄 [1𝑃(8)1 ]⟩ = 𝜋18 ⟨0 󵄨󵄨󵄨󵄨󵄨𝑂𝜂𝑄8 [1𝑃1]󵄨󵄨󵄨󵄨󵄨 0⟩ .

(5)

For the 𝜂𝑐 meson they are [56]

󵄨󵄨󵄨󵄨𝑅𝑐𝑐 (0)󵄨󵄨󵄨󵄨2 ≈ 0.58GeV3,
1.5 × 10−3 GeV3 < ⟨𝑂𝜂𝑐𝑆 ⟩ < 5.3 × 10−3 GeV3,

⟨𝑂𝜂𝑐𝑃 ⟩ = 𝜋18 × 3 × ⟨𝑂𝐽/𝜓 (3𝑃[8]0 )⟩
= 𝜋6 × 𝑚2𝑐 × (1.7 ± 0.5) × 10−2 GeV3,

(6)
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and for 𝜂𝑏 meson they are [85, 86]

󵄨󵄨󵄨󵄨𝑅𝑏𝑏 (0)󵄨󵄨󵄨󵄨2 ≈ 5.3GeV3,
⟨𝑂𝜂𝑏𝑆 ⟩ ≈ 0.01GeV3,
⟨𝑂𝜂𝑏𝑃 ⟩ = 𝜋18 × 3 × ⟨𝑂𝛾(1𝑠)8 (3𝑃0)⟩

= 5𝜋6 × 𝑚2𝑏 × (0.0121 ± 0.040) GeV3,

(7)

where𝑚𝑐 (𝑚𝑏) is the mass of charm (bottom).
In the semielastic resolved photoproduction g-g pro-

cesses, the parton (gluon) 𝑎 from resolved photon of the
incident nucleus 𝐴 interacts with the parton (gluon) 𝑏 of
another incident nucleus 𝐵, and the cross section is given by

𝑑𝜎semi.
𝐴𝐵→𝜂𝑄𝑋𝑑𝑝2𝑇𝑑𝑦 = ∫𝑑𝑥𝑎𝑑𝑥𝑏𝑓𝛾/𝑁 (𝑥𝑎) 𝑓𝑔/𝛾 (𝑧𝑎, 𝑄2)
⋅ 𝑓𝑔/𝐵 (𝑥𝑏, 𝑄2) 𝑥𝑎𝑥𝑏𝑧𝑎𝑥𝑎𝑥𝑏 − 𝑥𝑎𝑥2

𝑑𝜎̂
𝑑𝑡̂ (𝑔𝑔 󳨀→ 𝜂𝑄𝑔) ,

(8)

where 𝑓𝛾/𝑁(𝑥𝑎) is the photon spectrum of the nucleus, and
𝑓𝑔/𝛾(𝑧𝑎, 𝑄2) is the parton distribution function of the resolved
photon [87].

For p-p collisions, the photon spectrum function of a
proton can be written as [88–90]

𝑓𝛾/𝑝 (𝑥) = 𝛼2𝜋𝑥 [1 + (1 − 𝑥)2]
⋅ [ln𝐴𝑝 − 116 + 3𝐴𝑝 −

32𝐴2𝑝 +
13𝐴3𝑝] ,

(9)

where 𝑥 is the momentum fraction of photon, 𝐴𝑝 = 1 +0.71GeV2/𝑄2min, with

𝑄2min = −2𝑚2𝑝 + 12𝑠 [(𝑠 + 𝑚2𝑝) (𝑠 − 𝑥𝑠 + 𝑚2𝑝)

− (𝑠 − 𝑚2𝑝)√(𝑠 − 𝑥𝑠 − 𝑚2𝑝)2 − 4𝑚2𝑝𝑥𝑠] .
(10)

Here𝑚𝑝 is the mass of the proton and at high energies 𝑄2min
is given by𝑚2𝑝𝑥2/(1 − 𝑥).

For Pb-Pb collisions, the photon spectrum obtained from
a semiclassical description of high energy electromagnetic
collisions for low photon energies is given by [91, 92]

𝑓𝛾/𝑁 = 2𝑍2𝛼𝜋𝜔 ln( 𝛾𝜔𝑅) , (11)

where 𝜔 is the photon energy, and 𝑅 = 𝑏min is the nucleus
radius.

In inelastic resolved photoproduction g-g processes, the
parton (gluon) 𝑎󸀠 from resolved photon emitted by the
charged parton 𝑎 of the incident nucleus 𝐴 interacts with

the parton (gluon) 𝑏 of another incident nucleus 𝐵, and the
expression of the cross section is given by

𝑑𝜎inel.𝐴𝐵→𝜂𝑄𝑋𝑑𝑝2𝑇𝑑𝑦 = ∫𝑑𝑥𝑎𝑑𝑥𝑏𝑑𝑧𝑎𝑓𝑞/𝐴 (𝑥𝑎, 𝑄2) 𝑓𝛾/𝑞 (𝑧𝑎)
⋅ 𝑓𝑔/𝛾 (𝑧󸀠𝑎, 𝑄2𝛾) × 𝑓𝑔/𝐵 (𝑥𝑏, 𝑄2)
⋅ 𝑥𝑎𝑥𝑏𝑧𝑎𝑧󸀠𝑎𝑥𝑎𝑥𝑏𝑧𝑎 − 𝑥𝑎𝑧𝑎𝑥2

𝑑𝜎̂
𝑑𝑡̂ (𝑔𝑔 󳨀→ 𝜂𝑄𝑔) ,

(12)

where 𝑓𝛾/𝑞(𝑧) is the photon spectrum from the charged
parton of the incident nucleus. In relativistic hadron-hadron
and nucleus-nucleus collisions [69] we have

𝑓𝛾/𝑞 (𝑥) = 𝛼𝜋𝑒2𝑄{1 + (1 − 𝑥)
2

𝑥 (ln 𝐸𝑚 − 12)
+ 𝑥2 [ln( 2𝑥 − 2) + 1] + (2 − 𝑥)

2

2𝑥 ln(2 − 2𝑥2 − 𝑥 )} ,
(13)

with 𝑥 being the photon momentum fraction.

3. Numerical Results

In ultrarelativistic high energy nucleus-nucleus collisions, the
equivalent photon spectrum obtained with a semiclassical
description of high energy electromagnetic collisions for the
nucleus is 𝑓𝛾/𝑁 ∝ 𝑍2 ln 𝛾. At LHC energies, the Lorentz
factor 𝛾 = 𝐸/𝑚𝑁 = √𝑠𝑁𝑁/2𝑚𝑁 ≫ 1 becomes very
important. Indeed, the equivalent photon spectrum function
with Weizsäcker-Williams approximation for the proton is𝑓𝛾/𝑝 ∝ ln𝐴 ∝ ln(𝑠𝑁𝑁/𝑚2𝑝), where𝑚𝑝 is the protonmass and
√𝑠𝑁𝑁 is the centre-of-mass energy per nucleon pair. Since√𝑠𝑁𝑁 is very high, the photon spectrum function becomes
very large. Therefore the contribution of 𝜂𝑄meson produced
by semielastic hard photoproduction g-g processes cannot be
negligible at LHC energies. For the inelastic photoproduction
processes, the equivalent photon spectrum function of the
charged parton is 𝑓𝛾/𝑞 ∝ ln(𝐸/𝑚𝑞) = ln(√𝑠𝑁𝑁/2𝑚𝑞) + ln(𝑥),
where 𝑚𝑞 is the charged parton mass. Hence, the photon
spectrum for the charged parton becomes prominent at LHC
energies. The numerical results of our calculations for large-𝑝𝑇 𝜂𝑄mesons produced by the hard photoproduction gluon-
gluon processes in relativistic heavy ion collisions are plotted
in Figures 1 and 2.

In Figure 1 (Figure 2), we plot the contributions from
the hard photoproduction gluon-gluon processes to the 𝜂𝑐
(𝜂𝑏) meson at midrapidity in p-p and Pb-Pb collisions at
LHC energies. Compared with the production of the initial
gluon-gluon interaction (the dashed line), the contribution
of 𝜂𝑐,𝑏 meson produced by semielastic hard photoproduction
g-g processes (the dotted line) is not prominent in p-p
collisions with √𝑠𝑁𝑁 = 7.0TeV and √𝑠𝑁𝑁 = 14.0TeV, but
the contribution of inelastic photoproduction g-g processes
(the dashed-dotted line) becomes evident in p-p collisions
[see Figures 1(a), 1(b), 2(a), and 2(b)]. Indeed, for Pb-Pb



4 Advances in High Energy Physics

c at LHC
p-p

y = 0

7TeV

100

101

102

103

d


/d
p
T
d
y

(n
b/

G
eV

)

10 15 205

pT (GeV/c)

(a)

c at LHC
p-p

y = 0

14 TeV

d


/d
p
T
d
y

(n
b/

G
eV

)

100

101

102

103

10 15 205

pT (GeV/c)

(b)

c at LHC
Pb-Pb

y = 0

2.76A TeV

d


/d
p
T
d
y

(n
b/

G
eV

)

10−2

10−1

100

101

102

10 15 205

pT (GeV/c)

(c)

c at LHC
Pb-Pb

y = 0

5.5A TeV

d


/d
p
T
d
y

(n
b/

G
eV

)

10−1

100

101

102

10 15 205

pT (GeV/c)

(d)

Figure 1: The invariant cross section of large-𝑝𝑇 𝜂𝑐 meson production from gluon-gluon interaction at midrapidity in p-p collisions (√𝑠 =7.0TeV and √𝑠 = 14.0TeV) and Pb-Pb collisions (√𝑠 = 2.76TeV and √𝑠 = 5.5TeV) at the LHC. The dashed line (red line) is for the initial
gluon-gluon interaction (LO), the dotted line (blue line) for the semielastic hard photoproduction g-g processes (semi.), the dashed-dotted
line (wine line) for the inelastic hard photoproduction g-g processes (inel.), and the solid line (black line) for the sum of the above processes.
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Figure 2:The same as Figure 1 but for large-𝑝𝑇 𝜂𝑏meson production from gluon-gluon interaction atmidrapidity in p-p and Pb-Pb collisions
at the LHC.

collisions with √𝑠𝑁𝑁 = 2.76TeV and √𝑠𝑁𝑁 = 5.5TeV, the
contribution of semielastic photoproduction g-g processes
(the dotted line) and inelastic photoproduction g-g processes
(the dashed-dotted line) cannot be negligible at LHC energies
[see Figures 1(c), 1(d), 2(c), and 2(d)].

4. Conclusions

In summary, we have investigated the production of heavy
quarkonium 𝜂𝑐,𝑏 meson from the gluon-gluon interactions
in p-p collisions and Pb-Pb collisions at LHC energies. The



Advances in High Energy Physics 5

color-singlet and color-octet mechanisms have been used for
heavy quarkonium production processes. At the early stages
of relativistic high energy nucleus-nucleus collisions, the
ultrarelativistic nucleus (charged parton) can emit hadron-
like photons that can fluctuate into a gluon; then the gluon
interacts with a gluon of the other incident nucleus by gluon-
gluon interaction. Our results indicate that the contribution
of 𝜂𝑐,𝑏 meson produced by the hard photoproduction pro-
cesses cannot be negligible in p-p and Pb-Pb collisions at
LHC energies.
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