303 research outputs found

    Ethyl 2-(3-chloro-2-pyridyl)-5-oxopyrazolidine-3-carboxylate

    Get PDF
    In the mol­ecule of the title compound, C11H12ClN3O3, the five membered ring adopts an envelope conformation. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers

    Ethyl 3-bromo-1-(3-chloro­pyridin-2-yl)-1H-pyrazole-5-carboxyl­ate

    Get PDF
    The title compound, C11H9BrClN3O2, is an inter­mediate in the synthesis of Rynaxypyre, a new insecticidal anthranilic diamide used as a potent and selective ryanodine receptor activator. The dihedral angle between the aromatic ring planes is 78.7 (2)°

    Physiological and Biochemical Responses of Ulva prolifera

    Get PDF
    Responses of Ulva prolifera and Ulva linza to Cd2+ stress were studied. We found that the relative growth rate (RGR), Fv/Fm, and actual photochemical efficiency of PSII (Yield) of two Ulvaspecies were decreased under Cd2+ treatments, and these reductions were greater in U. prolifera than in U. linza. U. prolifera accumulated more cadmium than U. linza under Cd2+ stress. While U. linza showed positive osmotic adjustment ability (OAA) at a wider Cd2+ range than U. prolifera. U. linza had greater contents of N, P, Na+, K+, and amino acids than U. prolifera. A range of parameters (concentrations of cadmium, Ca2+, N, P, K+, Cl−, free amino acids (FAAs), proline, organic acids and soluble protein, Fv/Fm, Yield, OAA, and K+/Na+) could be used to evaluate cadmium resistance in Ulva by correlation analysis. In accordance with the order of the absolute values of correlation coefficient, contents of Cd2+ and K+, Yield, proline content, Fv/Fm, FAA content, and OAA value of Ulva were more highly related to their adaptation to Cd2+ than the other eight indices. Thus, U. linza has a better adaptation to Cd2+ than U. prolifera, which was due mainly to higher nutrient content and stronger OAA and photosynthesis in U. linza

    Value of Contrast-Enhanced Ultrasound and Acoustic Radiation Force Impulse Imaging for the Differential Diagnosis of Benign and Malignant Thyroid Nodules

    Get PDF
    Objectives: To assess the value of contrast-enhanced ultrasound (CEUS) and acoustic radiation force impulse (ARFI) imaging for the differential diagnosis of benign and malignant thyroid nodules.Methods: CEUS was performed in eighty-eight thyroid nodules. The patterns of CEUS were analyzed, and ARFI was then performed. The shear wave velocities (SWVs) of the nodules and the surrounding normal thyroid tissue were obtained. The areas under the curve (AUCs) and cut-off value were obtained by a receiver operating characteristic (ROC) curve analysis. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and diagnostic rate of each modality were assessed and compared using pathological diagnosis.Results: Among 88 nodules, 29 nodules were malignant and 59 were benign. The sensitivity, specificity, PPV, NPV, and diagnostic rate of CEUS were 79.3, 91.5, 82.1, 90, and 87.5%, respectively. Using a cut-off value of 2.565 m/s for SWV, the sensitivity, specificity, PPV, NPV and diagnostic rate for malignancy were 75.9, 94.9, 88.0, 88.9, and 88.6%, respectively. The AUC was 0.878. The sensitivity, specificity, PPV, NPV and diagnostic rate of CEUS in combination with ARFI were 93.1, 89.8, 81.8, 96.3, and 90.9%, respectively.Conclusion: Both CEUS and ARFI are valuable for the differential diagnosis of benign and malignant thyroid nodules. Combining these two methods can improve the diagnostic rate

    D 3 -MapReduce: Towards MapReduce for Distributed and Dynamic Data Sets

    Get PDF
    International audienceSince its introduction in 2004 by Google, MapRe-duce has become the programming model of choice for processing large data sets. Although MapReduce was originally developed for use by web enterprises in large data-centers, this technique has gained a lot of attention from the scientific community for its applicability in large parallel data analysis (including geographic, high energy physics, genomics, etc.). So far MapReduce has been mostly designed for batch processing of bulk data. The ambition of D 3-MapReduce is to extend the MapReduce programming model and propose efficient implementation of this model to: i) cope with distributed data sets, i.e. that span over multiple distributed infrastructures or stored on network of loosely connected devices; ii) cope with dynamic data sets, i.e. which dynamically change over time or can be either incomplete or partially available. In this paper, we draw the path towards this ambitious goal. Our approach leverages Data Life Cycle as a key concept to provide MapReduce for distributed and dynamic data sets on heterogeneous and distributed infrastructures. We first report on our attempts at implementing the MapReduce programming model for Hybrid Distributed Computing Infrastructures (Hybrid DCIs). We present the architecture of the prototype based on BitDew, a middleware for large scale data management, and Active Data, a programming model for data life cycle management. Second, we outline the challenges in term of methodology and present our approaches based on simulation and emulation on the Grid'5000 experimental testbed. We conduct performance evaluations and compare our prototype with Hadoop, the industry reference MapReduce implementation. We present our work in progress on dynamic data sets that has lead us to implement an incremental MapReduce framework. Finally, we discuss our achievements and outline the challenges that remain to be addressed before obtaining a complete D 3-MapReduce environment
    corecore