11 research outputs found

    On systems and control approaches to therapeutic gain

    Get PDF
    BACKGROUND: Mathematical models of cancer relevant processes are being developed at an increasing rate. Conceptual frameworks are needed to support new treatment designs based on such models. METHODS: A modern control perspective is used to formulate two therapeutic gain strategies. RESULTS: Two conceptually distinct therapeutic gain strategies are provided. The first is direct in that its goal is to kill cancer cells more so than normal cells, the second is indirect in that its goal is to achieve implicit therapeutic gains by transferring states of cancer cells of non-curable cases to a target state defined by the cancer cells of curable cases. The direct strategy requires models that connect anti-cancer agents to an endpoint that is modulated by the cause of the cancer and that correlates with cell death. It is an abstraction of a strategy for treating mismatch repair (MMR) deficient cancers with iodinated uridine (IUdR); IU-DNA correlates with radiation induced cell killing and MMR modulates the relationship between IUdR and IU-DNA because loss of MMR decreases the removal of IU from the DNA. The second strategy is indirect. It assumes that non-curable patient outcomes will improve if the states of their malignant cells are first transferred toward a state that is similar to that of a curable patient. This strategy is difficult to employ because it requires a model that relates drugs to determinants of differences in patient survival times. It is an abstraction of a strategy for treating BCR-ABL pro-B cell childhood leukemia patients using curable cases as the guides. CONCLUSION: Cancer therapeutic gain problem formulations define the purpose, and thus the scope, of cancer process modeling. Their abstractions facilitate considerations of alternative treatment strategies and support syntheses of learning experiences across different cancers

    In vivo characterization of a podocyte-expressed short podocin isoform

    No full text
    Abstract The most common genetic causes of steroid-resistant nephrotic syndrome (SRNS) are mutations in the NPHS2 gene, which encodes the cholesterol-binding, lipid-raft associated protein podocin. Mass spectrometry and cDNA sequencing revealed the existence of a second shorter isoform in the human kidney in addition to the well-studied canonical full-length protein. Distinct subcellular localization of the shorter isoform that lacks part of the conserved PHB domain suggested a physiological role. Here, we analyzed whether this protein can substitute for the canonical full-length protein. The short isoform of podocin is not found in other organisms except humans. We therefore analysed a mouse line expressing the equivalent podocin isoform (podocin Δexon5 ) by CRISPR/Cas-mediated genome editing. We characterized the phenotype of these mice expressing podocinΔexon5 and used targeted mass spectrometry and qPCR to compare protein and mRNA levels of podocinwildtype and podocinΔexon5. After immunolabeling slit diaphragm components, STED microscopy was applied to visualize alterations of the podocytes’ foot process morphology. Mice homozygous for podocin Δexon5 were born heavily albuminuric and did not survive past the first 24 h after birth. Targeted mass spectrometry revealed massively decreased protein levels of podocinΔexon5, whereas mRNA abundance was not different from the canonical form of podocin. STED microscopy revealed the complete absence of podocin at the podocytes’ slit diaphragm and severe morphological alterations of podocyte foot processes. Mice heterozygous for podocin Δexon5 were phenotypically and morphologically unaffected despite decreased podocin and nephrin protein levels. The murine equivalent to the human short isoform of podocin cannot stabilize the lipid-protein complex at the podocyte slit diaphragm. Reduction of podocin levels at the site of the slit diaphragm complex has a detrimental effect on podocyte function and morphology. It is associated with decreased protein abundance of nephrin, the central component of the filtration-slit forming slit diaphragm protein complex

    Super-Resolution imaging of the Filtration Barrier Suggests a Role for podocin R229O in Genetic Predisposition to Glomerular disease

    No full text
    Significance Statement Podocin R229Q results from the most frequent missense variant in NPHS2, and its association with FSGS when podocin R229Q is transassociated with a second mutation in NPHS2 is well recognized. However, because results from observational studies are ambiguous and appropriate animal studies are lacking, its isolated pathogenic potency is not entirely clear. In this study, the authors introduced this genetic alteration in mice and assessed the phenotype using super-resolution microscopy and albuminuria measurements. They demonstrated a deleterious effect of the variant on podocyte morphology and on the integrity of the glomerular filtration barrier under basal conditions and after external glomerular injury. Because this finding suggests that this mutation confers a genetic predisposition to glomerular disease, it has implications for a large number of carriers worldwide. Background Diseases of the kidney?s glomerular filtration barrier are a leading cause of end stage renal failure. Despite a growing understanding of genes involved in glomerular disorders in children, the vast majority of adult patients lack a clear genetic diagnosis. The protein podocin p.R229Q, which results from the most common missense variant in NPHS2, is enriched in cohorts of patients with FSGS. However, p.R229Q has been proposed to cause disease only when transassociated with specific additional genetic alterations, and population-based epidemiologic studies on its association with albuminuria yielded ambiguous results. Methods To test whether podocin p.R229Q may also predispose to the complex disease pathogenesis in adults, we introduced the exact genetic alteration in mice using CRISPR/Cas9-based genome editing (Pod(R231Q)). We assessed the phenotype using super-resolution microscopy and albuminuria measurements and evaluated the stability of the mutant protein in cell culture experiments. Results Heterozygous Pod(R231Q/wild-type) mice did not present any overt kidney disease or proteinuria. However, homozygous Pod(R231Q/R231Q) mice developed increased levels of albuminuria with age, and super-resolution microscopy revealed preceding ultrastructural morphologic alterations that were recently linked to disease predisposition. When injected with nephrotoxic serum to induce glomerular injury, heterozygous Pod(R231Q/wild-type) mice showed a more severe course of disease compared with Pod(wild-type/wild-type) mice. Podocin protein levels were decreased in Pod(R231Q/wild-type) and Pod(R231Q/R231Q) mice as well as in human cultured podocytes expressing the podocin(R231Q) variant. Our in vitro experiments indicate an underlying increased proteasomal degradation. Conclusions Our findings demonstrate that podocin R231Q exerts a pathogenic effect on its own, supporting the concept of podocin R229Q contributing to genetic predisposition in adult patients
    corecore