304 research outputs found

    Time as an operator/observable in nonrelativistic quantum mechanics

    Full text link
    The nonrelativistic Schroedinger equation for motion of a structureless particle in four-dimensional space-time entails a well-known expression for the conserved four-vector field of local probability density and current that are associated with a quantum state solution to the equation. Under the physical assumption that each spatial, as well as the temporal, component of this current is observable, the position in time becomes an operator and an observable in that the weighted average value of the time of the particle's crossing of a complete hyperplane can be simply defined: ... When the space-time coordinates are (t,x,y,z), the paper analyzes in detail the case that the hyperplane is of the type z=constant. Particles can cross such a hyperplane in either direction, so it proves convenient to introduce an indefinite metric, and correspondingly a sesquilinear inner product with non-Hilbert space structure, for the space of quantum states on such a surface. >... A detailed formalism for computing average crossing times on a z=constant hyperplane, and average dwell times and delay times for a zone of interaction between a pair of z=constant hyperplanes, is presented.Comment: 31 pages, no figures. Differs from published version by minor corrections and additions, and two citation

    Schroedinger equation for joint bidirectional motion in time

    Full text link
    The conventional, time-dependent Schroedinger equation describes only unidirectional time evolution of the state of a physical system, i.e., forward or, less commonly, backward. This paper proposes a generalized quantum dynamics for the description of joint, and interactive, forward and backward time evolution within a physical system. [...] Three applications are studied: (1) a formal theory of collisions in terms of perturbation theory; (2) a relativistically invariant quantum field theory for a system that kinematically comprises the direct sum of two quantized real scalar fields, such that one field evolves forward and the other backward in time, and such that there is dynamical coupling between the subfields; (3) an argument that in the latter field theory, the dynamics predicts that in a range of values of the coupling constants, the expectation value of the vacuum energy of the universe is forced to be zero to high accuracy. [...]Comment: 30 pages, no figures. Related material is in quant-ph/0404012. Differs from published version by a few added remarks on the possibility of a large-scale-average negative energy density in spac

    Strong quantum violation of the gravitational weak equivalence principle by a non-Gaussian wave-packet

    Full text link
    The weak equivalence principle of gravity is examined at the quantum level in two ways. First, the position detection probabilities of particles described by a non-Gaussian wave-packet projected upwards against gravity around the classical turning point and also around the point of initial projection are calculated. These probabilities exhibit mass-dependence at both these points, thereby reflecting the quantum violation of the weak equivalence principle. Secondly, the mean arrival time of freely falling particles is calculated using the quantum probability current, which also turns out to be mass dependent. Such a mass-dependence is shown to be enhanced by increasing the non-Gaussianity parameter of the wave packet, thus signifying a stronger violation of the weak equivalence principle through a greater departure from Gaussianity of the initial wave packet. The mass-dependence of both the position detection probabilities and the mean arrival time vanish in the limit of large mass. Thus, compatibility between the weak equivalence principle and quantum mechanics is recovered in the macroscopic limit of the latter. A selection of Bohm trajectories is exhibited to illustrate these features in the free fall case.Comment: 11 pages, 7 figure

    On the quantum analogue of Galileo's leaning tower experiment

    Full text link
    The quantum analogue of Galileo's leaning tower experiment is revisited using wave packets evolving under the gravitational potential. We first calculate the position detection probabilities for particles projected upwards against gravity around the classical turning point and also around the point of initial projection, which exhibit mass dependence at both these points. We then compute the mean arrival time of freely falling particles using the quantum probability current, which also turns out to be mass dependent. The mass dependence of both the position detection probabilities and the mean arrival time vanish in the limit of large mass. Thus, compatibility between the weak equivalence principle and quantum mechanics is recovered in the macroscopic limit of the latter.Comment: Latex, 12 pages, 1 figure, uses IOP style, clarifications and references adde

    The Super-TIGER Instrument to Probe Galactic Cosmic Ray Origins

    Get PDF
    Super-TIGER (Super Trans-Iron Galactic Element Recorder) is under construction for the first of two planned Antarctic long-duration balloon flights in December 2012. This new instrument will measure the abundances of ultra-heavy elements (30Zn and heavier), with individual element resolution, to provide sensitive tests of the emerging model of cosmic-ray origins in OB associations and models of the mechanism for selection of nuclei for acceleration. Super-TIGER builds on the techniques of TIGER, which produced the first well-resolved measurements of elemental abundances of the elements 31Ga, 32Ge, and 34Se. Plastic scintillators together with acrylic and silica-aerogel Cherenkov detectors measure particle charge. Scintillating-fiber hodoscopes track particle trajectories. Super-TIGER has an active area of 5.4 sq m, divided into two independent modules. With reduced material thickness to decrease interactions, its effective geometry factor is approx.6.4 times larger than TIGER, allowing it to measure elements up to 42Mo with high statistical precision, and make exploratory measurements up to 56Ba. Super-TIGER will also accurately determine the energy spectra of the more abundant elements from l0Ne to 28Ni between 0.8 and 10 GeV/nucleon to test the hypothesis that microquasars or other sources could superpose spectral features. We will discuss the implications of Super-TIGER measurements for the study of cosmic-ray origins and will present the measurement technique, design, status, and expected performance, including numbers of events and resolution. Details of the hodoscopes, scintillators, and Cherenkov detectors will be given in other presentations at this conference

    THE SuperTIGER Instrument: Measurement of Elemental Abundances of Ultra-Heavy Galactic Cosmic Rays

    Get PDF
    The SuperTIGER (Super Trans-Iron Galactic Element Recorder) instrument was developed to measure the abundances of galactic cosmic-ray elements from Ne-10 to Zr-40 with individual element resolution and the high statistics needed to test models of cosmic-ray origins. SuperTIGER also makes exploratory measurements of the abundances of elements with 40 or = 10, including approx.1300 with Z > 29 and approx.60 with Z > 49. Here, we describe the instrument, the methods of charge identification employed, the SuperTIGER balloon flight, and the instrument performance

    Entropic Tension in Crowded Membranes

    Get PDF
    Unlike their model membrane counterparts, biological membranes are richly decorated with a heterogeneous assembly of membrane proteins. These proteins are so tightly packed that their excluded area interactions can alter the free energy landscape controlling the conformational transitions suffered by such proteins. For membrane channels, this effect can alter the critical membrane tension at which they undergo a transition from a closed to an open state, and therefore influence protein function \emph{in vivo}. Despite their obvious importance, crowding phenomena in membranes are much less well studied than in the cytoplasm. Using statistical mechanics results for hard disk liquids, we show that crowding induces an entropic tension in the membrane, which influences transitions that alter the projected area and circumference of a membrane protein. As a specific case study in this effect, we consider the impact of crowding on the gating properties of bacterial mechanosensitive membrane channels, which are thought to confer osmoprotection when these cells are subjected to osmotic shock. We find that crowding can alter the gating energies by more than 2  kBT2\;k_BT in physiological conditions, a substantial fraction of the total gating energies in some cases. Given the ubiquity of membrane crowding, the nonspecific nature of excluded volume interactions, and the fact that the function of many membrane proteins involve significant conformational changes, this specific case study highlights a general aspect in the function of membrane proteins.Comment: 20 pages (inclduing supporting information), 4 figures, to appear in PLoS Comp. Bio

    Definition of the σW regulon of Bacillus subtilis in the absence of stress

    Get PDF
    Bacteria employ extracytoplasmic function (ECF) sigma factors for their responses to environmental stresses. Despite intensive research, the molecular dissection of ECF sigma factor regulons has remained a major challenge due to overlaps in the ECF sigma factor-regulated genes and the stimuli that activate the different ECF sigma factors. Here we have employed tiling arrays to single out the ECF σW regulon of the Gram-positive bacterium Bacillus subtilis from the overlapping ECF σX, σY, and σM regulons. For this purpose, we profiled the transcriptome of a B. subtilis sigW mutant under non-stress conditions to select candidate genes that are strictly σW-regulated. Under these conditions, σW exhibits a basal level of activity. Subsequently, we verified the σW-dependency of candidate genes by comparing their transcript profiles to transcriptome data obtained with the parental B. subtilis strain 168 grown under 104 different conditions, including relevant stress conditions, such as salt shock. In addition, we investigated the transcriptomes of rasP or prsW mutant strains that lack the proteases involved in the degradation of the σW anti-sigma factor RsiW and subsequent activation of the σW-regulon. Taken together, our studies identify 89 genes as being strictly σW-regulated, including several genes for non-coding RNAs. The effects of rasP or prsW mutations on the expression of σW-dependent genes were relatively mild, which implies that σW-dependent transcription under non-stress conditions is not strictly related to RasP and PrsW. Lastly, we show that the pleiotropic phenotype of rasP mutant cells, which have defects in competence development, protein secretion and membrane protein production, is not mirrored in the transcript profile of these cells. This implies that RasP is not only important for transcriptional regulation via σW, but that this membrane protease also exerts other important post-transcriptional regulatory functions

    Evaluation of a web-based ECG-interpretation programme for undergraduate medical students

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most clinicians and teachers agree that knowledge about ECG is of importance in the medical curriculum. Students at Karolinska Institutet have asked for more training in ECG-interpretation during their undergraduate studies. Clinical tutors, however, have difficulties in meeting these demands due to shortage of time. Thus, alternative ways to learn and practice ECG-interpretation are needed. Education offered via the Internet is readily available, geographically independent and flexible. Furthermore, the quality of education may increase and become more effective through a superior educational approach, improved visualization and interactivity.</p> <p>Methods</p> <p>A Web-based comprehensive ECG-interpretation programme has been evaluated. Medical students from the sixth semester were given an optional opportunity to access the programme from the start of their course. Usage logs and an initial evaluation survey were obtained from each student. A diagnostic test was performed in order to assess the effect on skills in ECG interpretation. Students from the corresponding course, at another teaching hospital and without access to the ECG-programme but with conventional teaching of ECG served as a control group.</p> <p>Results</p> <p>20 of the 32 students in the intervention group had tested the programme after 2 months. On a five-graded scale (1- bad to 5 – very good) they ranked the utility of a web-based programme for this purpose as 4.1 and the quality of the programme software as 3.9. At the diagnostic test (maximal points 16) by the end of the 5-month course at the 6th semester the mean result for the students in the intervention group was 9.7 compared with 8.1 for the control group (p = 0.03).</p> <p>Conclusion</p> <p>Students ranked the Web-based ECG-interpretation programme as a useful instrument to learn ECG. Furthermore, Internet-delivered education may be more effective than traditional teaching methods due to greater immediacy, improved visualisation and interactivity.</p
    • …
    corecore