24,799 research outputs found

    Ground state and constrained domain walls in Gd/Fe multilayers

    Full text link
    The magnetic ground state of antiferromagnetically coupled Gd/Fe multilayers and the evolution of in-plane domain walls is modelled with micromagnetics. The twisted state is characterised by a rapid decrease of the interface angle with increasing magnetic field. We found that for certain ratios M(Fe):M(Gd), the twisted state is already present at low fields. However, the magnetic ground state is not only determined by the ratio M(Fe):M(Gd) but also by the thicknesses of the layers, that is the total moments of the layer. The dependence of the magnetic ground state is explained by the amount of overlap of the domain walls at the interface. Thicker layers suppress the Fe aligned and the Gd aligned state in favour of the twisted state. Whereas ultrathin layers exclude the twisted state, since wider domain walls can not form in these ultrathin layers

    Multi-excitonic complexes in single InGaN quantum dots

    Full text link
    Cathodoluminescence spectra employing a shadow mask technique of InGaN layers grown by metal organic chemical vapor deposition on Si(111) substrates are reported. Sharp lines originating from InGaN quantum dots are observed. Temperature dependent measurements reveal thermally induced carrier redistribution between the quantum dots. Spectral diffusion is observed and was used as a tool to correlate up to three lines that originate from the same quantum dot. Variation of excitation density leads to identification of exciton and biexciton. Binding and anti-binding complexes are discovered.Comment: 3 pages, 4 figure

    Coccidial Infection in Neonatal Swine

    Get PDF
    Coccidia have been implicated as another of the many pathogens responsible for scours in baby pigs. The clinical syndrome begins at about 5 days to 3 weeks of age and is similar to other enteritides of neonatal swine. The pigs begin to scour and do not grow well. In some cases, a mortality of up to 50% of those affected has been noted. Negative response to antibiotics normally employed in baby pig scours is often observed as another feature of the disease

    J_AW,WA functions in Passarino-Veltman reduction

    Full text link
    In this paper we continue to study a special class of Passarino-Veltman functions J arising at the reduction of infrared divergent box diagrams. We describe a procedure of separation of two types of singularities, infrared and mass singularities, which are absorbed in simple C0 functions. The infrared divergences of C0's can be regularized then by any method: photon mass, dimensionally or by the width of an unstable particle. Functions J, in turn, are represented as certain linear combinations of the standard D0 and C0 Passarino-Veltman functions. The former are free of both types of singularities and are expressed as explicit and compact linear combinations of logarithms and dilogarithm functions. We present extensive comparisons of numerical results with those obtained with the aid of the LoopTools package

    SPLINE MODELS FOR ESTIMATING HEAT STRESS THRESHOLDS IN CATTLE

    Get PDF
    Studies of the relationship between animal body temperature and air temperature suggest body temperature is essentially unresponsive until a threshold is reached, then it responds dramatically to increasing air temperature. The goal is to estimate the threshold between the thermoneutral plateau and the beginning of the heat stress challenge. One approach is to fit a polynomial to estimate the knot position and use spline functions to perform linear least squares piecewise polynomial fitting. Another alternative is to use nonlinear regression to estimate the knot or an inflection point of a nonlinear function. In both approaches the cyclic nature of body temperature is ignored. This paper explores the use of nonlinear regression to estimate the knot position and handles the hysteresis effect resulting from the cyclic nature of body temperature. Models are fit to data collected from cattle in chambers subjected to semicontrolled sinusoidal air temperature at the University of Missouri-Columbia Animal Science department and a procedure for estimating the heat stress threshold is proposed

    Structure and Dynamics of Metalloproteins in Live Cells

    Get PDF
    X-ray absorption spectroscopy (XAS) has emerged as one of the premier tools for investigating the structure and dynamic properties of metals in cells and in metal containing biomolecules. Utilizing the high flux and broad energy range of X-rays supplied by synchrotron light sources, one can selectively excite core electronic transitions in each metal. Spectroscopic signals from these electronic transitions can be used to dissect the chemical architecture of metals in cells, in cellular components and in biomolecules at varying degrees of structural resolution. With the development of ever-brighter X-ray sources, X-ray methods have grown into applications that can be utilized to provide both a cellular image of relative distribution of metals throughout the cell as well as a high-resolution picture of the structure of the metal. As these techniques continue to grow in their capabilities and ease of use, so to does the demand for their application by chemists and biochemists interested in studying the structure and dynamics of metals in cells, in cellular organelles and in metalloproteins

    Project {\tt SANC} (former {\tt CalcPHEP}): Support of Analytic and Numeric calculations for experiments at Colliders

    Get PDF
    The project, aimed at the theoretical support of experiments at modern and future accelerators -- TEVATRON, LHC, electron Linear Colliders (TESLA, NLC, CLIC) and muon factories, is presented. Within this project a four-level computer system is being created, which must automatically calculate, at the one-loop precision level the pseudo- and realistic observables (decay rates and event distributions) for more and more complicated processes of elementary particle interaction, using the principle of knowledge storing. It was already used for a recalculation of the EW radiative corrections for Atomic Parity Violation [1] and complete one-loop corrections for the process e+e−→ttˉe^+ e^-\to t\bar{t} [2-4]; for the latter an, agreement up to 11 digits with FeynArts and the other results is found. The version of {\tt SANC} that we describe here is capable of automatically computing the decay rates and the distributions for the decays Z(H,W)→ffˉZ(H,W)\to f\bar{f} in the one-loop approximation.Comment: 3 Latex, Presented at ICHEP2002, Amsterdam, July 24-30, 2000; Submitted to Proceeding

    Experimental and theoretical analysis of the upper critical field in FSF trilayers

    Full text link
    The upper critical magnetic field H_{c2} in thin-film FSF trilayer spin-valve cores is studied experimentally and theoretically in geometries perpendicular and parallel to the heterostructure surface. The series of samples with variable thicknesses of the bottom and of the top Cu_{41}Ni_{59} F-layers are prepared in a single run, utilizing a wedge deposition technique. The critical field H_{c2} is measured in the temperature range 0.4−80.4-8 K and for magnetic fields up to 9 Tesla. A transition from oscillatory to reentrant behavior of the superconducting transition temperature versus F-layers thickness, induced by an external magnetic field, has been observed for the first time. In order to properly interpret the experimental data, we develop a quasiclassical theory, enabling one to evaluate the temperature dependence of the critical field and the superconducting transition temperature for an arbitrary set of the system parameters. A fairly good agreement between our experimental data and theoretical predictions is demonstrated for all samples, using a single set of fit parameters. This confirms adequacy of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) physics in determining the unusual superconducting properties of the studied Cu_{41}Ni_{59}/Nb/Cu_{41}Ni_{59} spin-valve core trilayers.Comment: 16 pages, 7 figures; published versio

    Electroweak radiative corrections to the three channels of the process f_1 bar-f_1 ZA --> 0

    Full text link
    We have calculated the electroweak radiative corrections at the O(alpha) level to the three channels of the process f_1 bar-f_1 Z A --> 0 and implemented them into the SANC system. Here A stands for the photon and f_1 for a first generation fermion whose mass is neglected everywhere except in arguments of logarithmic functions. The symbol --> 0 means that 4-momenta of all the external particles flow inwards. We present the complete analytical results for the covariant and helicity amplitudes for three cross channels: f_1 + bar-f_1 --> Z + gamma, Z --> f_1 + bar-f_1 + gamma and f_1 + gamma --> f_1 + Z. The one-loop scalar form factors of these channels are simply related by an appropriate permutation of their arguments s,t,u. To check the correctness of our results we first of all observe the independence of the scalar form factors on the gauge parameters and the validity of the Ward identity, i.e. external photon transversality, and, secondly, compare our numerical results with the other independent calculations available to us.Comment: 19 pages, 6 figures, 10 table
    • …
    corecore