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SPLINE MODELS FOR ESTIMATING HEAT STRESS THRESHOLDS IN CATTLE 

A. M. Parkhurst\ D. A.Spiers2, T.L.Mader\ and G. L. Hahn3 

IUniversity of Nebraska - Lincoln 
2University of Missouri - Columbia 

3 U.S. Meat Animal Research Center, U.S. Department of Agriculture 

Abstract: Studies of the relationship between animal body temperature and air temperature 
suggest body temperature is essentially unresponsive until a threshold is reached, then it 
responds dramatically to increasing air temperature. The goal is to estimate the threshold 
between the thermoneutral plateau and the beginning of the heat stress challenge. One approach 
is to fit a polynomial to estimate the knot position and use spline functions to perform linear least 
squares piecewise polynomial fitting. Another alternative is to use nonlinear regression to 
estimate the knot or an inflection point of a nonlinear function. In both approaches the cyclic 
nature of body temperature is ignored. This paper explores the use of nonlinear regression to 
estimate the knot position and handles the hysteresis effect resulting from the cyclic nature of 
body temperature. Models are fit to data collected from cattle in chambers subjected to semi
controlled sinusoidal air temperature at the University of Missouri-Columbia Animal Science 
department and a procedure for estimating the heat stress threshold is proposed. 

KEY WORDS: Hysteresis, nonlinear regression, nonlinear mixed models, heat stress, thresholds 

1. Introduction 
A heat-stress threshold is the point at which a thermally challenged animal activates a 
physiological process (e.g., dynamic changes in body temperature) to dissipate the increasing 
heat load. It is important to identify a threshold for the onset of heat stress since it represents an 
animal's heat tolerance. This tolerance has a direct impact on productive performance responses 
such as growth rate, feed efficiency, reproduction, and in extreme environments, survival. 
Estimates of the heat-stress thresholds may be used generally as a basis for initiating 
management practices or individually to rank animals according to their heat tolerance. 

The relationship between animal body temperature, Tb, and air temperature, Ta, is frequently a 
topic of investigation (e.g., Mader et. aI., 2001). Typically body temperature responds only 
minimally to air temperature within the thermoneutral range, but rises sharply following the 
onset of a heat challenge. Several methods are used to estimate the heat-stress threshold. They 
range from visual examination of a change in the data plots to fitting a statistical model. Often 
the model is a polynomial, or in the case of spline functions, a piecewise polynomial. The 
threshold may be the abscissa, Ta, at the optimal value of the polynomial or, when spline 
functions are used, the threshold is the knot, or the value of Ta at the join point of the 
polynomials. Frequently, the thresholds (knots) are assumed known and linear regression is 
used to fit the model. Less frequently, the threshold is considered unknown. When unknown, 
the threshold can be estimated using the iterative procedures in nonlinear regression. 
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Other issues worthy of consideration are animal variation and hysteresis. Rarely are animals 
homogeneous with respect to body temperature. Variation among individual steers can obscure 
evocative patterns (Figure 1). Examination of animal variation can lead to valuable biological 
insights, as well as, more efficient statistical analyses. The same can be said for the issue of 
hysteresis. By identifying the time sequence of observations for a given animal, the lag or delay 
between Tb and Ta becomes apparent. The duality in Tb for a given Ta becomes an important 
consideration. (See section 3 below). In this paper we discuss how the estimate of heat threshold 
changes depending on the model selected, as well as, assumptions made about hysteresis, and 
assumptions about animal variation. To illustrate the models, data from one animal (a crossbred 
steer) exposed to controlled sinusoidal heat stress at the U.S. Meat Animal Research Center 
under the direction of G.L.Hahn was used. The full analysis of the motivating experiment 
contained data from six steers exposed to semi-controlled sinusoidal conditions at the University 
of Missouri-Columbia Animal Science department under the direction of D.A. Spiers. 

2. Models Considered 
The types of models considered were a) polynomial, b) spline with knot given, and c) spline with 
knot unknown (Figure 2). 
2a.) Polynomial Model 
The only polynomial considered for linear least squares analysis was a quadratic form. The 
threshold was estimated as the Ta for which the rate of change in Tb is zero. 

Tb = a + b~l + C~12 
aT 
_b =b+2cT =0 
a~, a 

T =-~ 
a 2c 

Figure 3 is an example of a quadratic estimate for a single steer. 

2b.) Spline Model with Knot Given 
Splines are defined here to be piecewise polynomials of degree n (Smith, 1979). The points 
where the pieces (segments) meet are called join points. The values of the abscissa at the joint 
points are called knots. It is easier to fit a spline with known knots because linear least squares 
or maximum likelihood regression methods can be applied. Models can be evaluated using 1'

squared, mean square error (mse) and and information criteria such as Akaike's AIC and 
Schwartz's Bayeasan, BIC. The number of segments and values for the knots may be found in 
the literature, given by theory, estimated by polynomials or obtained from visual examination of 
data graphs. 

Examination of the heat stress data indicates the relationship between Tb and Ta for a single 
steer appears to have two segments (Figure 3). The Tb seems unaffected by Ta until the 
threshold is reached, then increases noticeably. Thus, we began by fitting a spline of two straight 
lines with known knot. The value of the knot is judiciously taken from the literature to be 21.5C 
(e.g. Hahn, 1980). 
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The spline model can be represented in terms of the abscissa, X for the first segment of Ta, and 
an additional variable on the abscissa, XII, to provide a continuous scale for the second segment 
of Ta (Freund and Littell, 2000). 

XII = max (X - knot, 0) 

Model Y = a + b*X + bII*XII 

If X < knot then Y = a + b*X 
If X > knot then Y = a + b*X +bII*XII 

= a + b*X +bII*(X-KNOT) 
Y = (a-bII*KNOT) + (b + bII )*X 

When X=Knot both equations give same Y 

This spline model is continuous at the knot (threshold). The above model is a weighted sum of a 
single constant, a line for the first segment and a line for the second segment. If the coefficient, 
b, is restricted to zero, the line for the first segment is a plateau. The SAS procedures proc mixed 
and proc reg can be used for the analysis (SAS, 1999). For proc mixed, the information criteria 
are provided automatically. For proc reg, r2 is always provided and the "restrict" option provides 
a ready test for the plateau. 

A major criticism of linear spline models is the abrupt change in trend. In nature, most processes 
are considered to change continuously from one segment to another. The rate of change is 
smooth. The derivatives are continuous. While this is not possible for linear splines, it is 
possible for higher order polynomials, beginning with quadratic functions. A quadratic spline 
function is smooth when the derivatives are equal at the knots. 

Representation of the quadratic spline requires an additional variable: X2II = XII*XII. 

Model Y = a+ b*X+ b2*X2+ bII*XII+ b2II*X2II 

If X < knot then Y = a + b*X + b2*X2 
If X > knot then Y = a + b*X + b2*X2 +bII*XII +b2II*X2II 

Y = a + b*X + b2*X2 +bII*(X-KNOT)+ b2II*(X-KNOT)**2 

Y = (a- KNOT *bII+KNOT*KNOT*b2II) + (b + bII-2*KNOT*b2II )*X+(b2+b2II)*X2 

This model has a single constant for continuity at the knot and a linear and quadratic coefficient 
for each segment. Equating the first derivatives from each segment insures a smooth function 

b+2*b2*X = (b + bII-2*KNOT*b2II ) + 2*(b2+b2II)*X 
and leads to a test for the smoothness restriction, Ho: bII=O. 

2e.) Spline Model with Knot Unknown 
The focus of this study is to estimate the heat threshold, the knot. This problem is more difficult 
because the knot is a parameter of the model. Fortunately, nonlinear regression allows us to deal 
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with this complication. Additional input for the regression is required. The nonlinear process is 
iterative and as such needs initial starting values for all parameters. Initial starting values are 
readily available from the known knot spline model. 

Both SAS procedures, proc nlin and nlmixed, were used for this model. The nlmixed procedure 
(with fixed effects only-animal effects ignored) was preferred because it automatically provides 
the information criteria and appeared less sensitive to violations of smoothness, at least for the 
data in this study. The following statements for the plateau-quadratic spline are: 

3. Hysteresis 

proc nlmixed df=330; 
parms bO=39 bl=.02 b2=.01 knoC=21 s2e=.I; 

xII=max(x-knoc, 0); 
x2II=xII*xII; 

fnmu=bO+ bl *xII+b2*x2II; 
model y-normal(fnmu,s2e); 

Hysteresis is the retardation or delay in the effect of a thermal challenge on an animal's 
thermoregulatory response. The primary reason for incorporating hysteresis into the model is to 
recognize the time-dependence of the level of an animal's Tb for a specified thermal condition. 
The Tb depends on whether Ta is increasing or decreasing. For Tb, the amount of hysteresis also 
indicates the degree of thermoregulatory control, which is related to the animal's heat dissipation 
capabilities and ultimately to productive performance and survival. 

A simple way to show the thermal hysteresis, i.e. the relationship between Tb and Ta as it varies 
with time, is to plot Tb against Ta. The trajectories from one point to another are then mapped 
to trace out the path as time passes. These graphs are known as phase plane plots and if the 
trajectories form ellipsoids, the process is periodic with a limit cycle that represents stable 
equilibrium. If there is no tilt to the ellipsoid, as in the thermoneutral stage, (Figure 6-TN), there 
is little correlation between Tb and Ta. 

If the ellipsoid is tilted, as in the heat stress stage, (Figure 6-HS), there is a correlation between 
Tb and Ta. When the ellipsoid is very narrow, there is no hysteresis, no lag. If the major axis is 
long relative to a short minor axis, there is virtually no difference in Tb between challenge 
(increasing Ta) and recovery (decreasing Ta) during heat stress. As the major axis decreases and 
the minor axis increases, the difference between challenge and recovery becomes more variable 
indicating the presence of hysteresis, Figure 7. Figure 8 shows the sinusoidal functions of Ta 
and Tb with a delay of 4 hours for the ellipsoid of lag 4. The amount of hysteresis (lag) indicates 
the degree of thermoregulatory control. A lag of 4h indicates less control than a lag of Ih. The 
difference between challenge and recovery is more variable for a 4h lag than a I hr. 

One way to handle hysteresis is to omit the recovery data from the analysis. The first difference 
can be used to classify the observations. If the first difference is less than 0, the observation is 
categorized as recovery; otherwise, as challenge. Figure 9 illustrates how the pattern of the 
plateau-quadratic spline changes when the recovery data are omitted from the analysis. Clearly, 
accounting for the hysteresis improves the results. The threshold estimate is higher, closer to the 
theorized value, while the mse and information criteria are lower. 
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4. Nonlinear Mixed model Analysis 
There is considerable variation among the six steers, which is easily seen when the same scale is 
used for each plot, (Figure 10). The nonlinear mixed model procedure allows us to estimate 
random coefficients in addition to fixed effects. Random effects can enter the model in several 
ways. Inspection of Figure 10 suggests a random component to be added to the intercept for 
each steer and possibly a random component for the slope, bL. It is also possible to estimate the 
covariance between these random effects. The expected value of the two random effects is 
assumed to be zero. 

The proc nlmixed statements for the nonlinear fixed model are given above. Proc nlmixed has 
additional statements when random effects are included. The two random components, steer and 
bL, are specified in the random statement. They are assumed to have a normal distribution with 
means of zero and a covariance matrix to be estimated. The subject variable indicates new 
realizations of the random components occur for each animal. Additional initial parameter 
estimates are needed for the variance and covariance of these random effects. The following 
statements are for the linear-quadratic spline model: 

proc nlmixed ; 
parms bO=39 b1=.02 bII=.Ol b2II=.07 knoC=2S s2e=.1 

s2steer=.1 s2bL=.OS covI2=0; 
bounds s2e s2s s2bL >0; bounds 10< knot_ <36; 

xII=max(x-knoC, 0); 
x2II=xII*xII; 

bL_= bl +bL; 
fnmu=bO + bL_ *x + bII*xII + b2II*x2II + steer; 
model y - normal (fnmu,s2e); 

random steer bL- normal ([0, 0],[s2steer, covl2, s2bLD subject=animal; 

5. Results and Discussion 
A quadratic polynomial model for all the data gives a mse = 0.1234 and relatively high 
information criteria (AIC=41 1.7, BIC=41S.9). Evaluation of the knot produced an unrealistic 
estimate of 7.3C for the heat stress threshold (Figure 3) which is much lower than the generally 
accepted estimates of 22-2SC (Hahn, 1989). 

Examples of the plateau-linear and linear-linear splines are given in Figure 4.a and 4.b. The 
lower mse, AIC and BIC and higher r2 indicate the linear-linear spline is the preferred model. 
Figures 4c and 4d are examples of quadratic-quadratic and linear-quadratic splines. For the 
quadratic-quadratic model, the coefficient of bI! is nonsignificant (p>O.OS). The function is 
continuous at the estimated knot (threshold =21.SC) and there is a smooth change in trend 
between parabolas. On the other hand, the change in trend is discontinuous for the linear
quadratic spline (p<O.OS) leading to a model of questionable validity. The quadratic-quadratic 
spline is also preferred for this example because of the lower mse, AIC and BIC and higher r2. 

Figures Sa-d show examples of the four spline models considered above; only this time, the knot 
is estimated from the data. All of these models have lower information criteria and lower 
estimates for the knot threshold than when the knot was specified as 21.SC. None of the models 
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satisfy the smoothness restriction. The linear-quadratic spline, with a threshold estimate of 
16.89C has the best fit of all models considered thus far. 

The results of the linear-quadratic spline models, both ignoring and accounting for the effects of 
hysteresis are given in Table l. The data consisted of hourly means for the six steers. Proc 
nlmixed was used to analyze the nonlinear fixed model by omitting the random effects. The 
initial parameter estimates are specified in section 3b above. If the effect of hysteresis is 
ignored, the prefen-ed model is the plateau-quadratic spline. The information criteria are 
uniformly lower and the mse=O.110 is slightly higher. The threshold estimate is 22.67C with a 
standard en-or of 2.77. 

When the effect of hysteresis is managed by analyzing the challenge data, the linear-quadratic 
spline is preferred based on the information criteria (AIC=70.6 and BIC=90.4). The mse is 0.085 
and the threshold estimate is 26.5C with a standard error of 1.14 resulting in a confidence 
interval of [24.31,29.71]. 

Table 2 gives the results for spline models with the knot specified as 21.5. Regardless of how 
hysteresis is handled, the information criteria indicate the plateau-quadratic spline is preferred. 
But these models pale in comparison to the splines where the knots are estimated from the data 
using nonlinear procedures (Table 1). Not surprisingly, the information criteria are improved 
(lowered) when knots are estimated from the data, regardless of whether hysteresis is ignored or 
managed. The specification of a 21.5C threshold is too high for some models and too low for 
others. 

None of the above models pass the test for smoothness. The linear coefficient for the second 
segment is significant. This result casts doubt on the validity of the models and leads us to 
question the assumption that the rate of change is continuous. Possibly a three-segment model 
would be more appropriate. See Figure 11. The thermoneutral segment, TN, may be considered 
as a horizontal ellipse; the heat stress segment, a tilted ellipse. The middle segment could be a 
straight line joining the two major axes; the top of the TN axis and the bottom of the HS axis. 

To include animal variation in the analysis, the Nlmixed procedure was used on the individual 
steer data with the random effects described in section 4. The results for the linear-quadratic 
spline for the challenge data are presented in Table 3. All of the fixed parameter estimates were 
significant (p<0.05). The threshold estimate (26.54C) had a standard error of 0.60. The 
confidence interval is [24.89,28.21]. However, none of the random effects were significant. The 
mse = 0.132 is higher than in the nonlinear fixed analysis as are the information criteria 
(AIC=1035.0 and BIC=1033.1). The increase in parameters does not result in a substantial 
reduction in the mse. 

6. Summary 
Regressions between Tb and Ta provide rewarding ways to study the change between 
thermoneutral and heat stressing Ta. Polynomials and polynomial spline models provide 
estimates of heat stress thresholds. The traditional approach of using least squares to fit a 
polynomial (quadratic) and estimate the optimal value gave spurious results. A better approach 
is to use spline models. When fitting a two-segment polynomial model, the best fits are obtained 
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when the second segment is a quadratic, and the first is either a plateau or linear function. 
Although spline models with knots given can produce reasonable fits using linear least squares, 
spline models with unknown knots using nonlinear regression are even better, especially if the 
emphasis is on estimating the threshold. 

The presence of hysteresis is readily apparent from Tb-Ta plots of individuals or means over 
individuals. Analyses that ignore hysteresis provide poorer fits than those that recognize the 
presence of the effect. A plausible way to manage hysteresis when using polynomial segments is 
to divide the data into two categories, challenge and recovery, depending on whether the first 
difference is increasing or decreasing. The recovery data is then omitted from the analysis. 
When hysteresis was managed in this way, the optimum two-segment polynomial model for this 
data was the linear-quadratic spline with fixed effects. Including random effects due to steers 
and linear slopes to account for animal variation did not substantially improve the fit. Thus, the 
linear-quadratic spline with fixed effects is proposed as the best choice of the models studied. It 
provides a reasonable threshold estimate with minimum standard elTor and optimum information 
criteria. 

However, it must be noted that all models studied failed to pass the smoothness restriction of 
continuous rate of change. This suggests other models may be preferable. One possibility 
suggested by the data is an ellipse-linear-ellipse spline. But the most important result of this 
study is the need for a more explicit definition of heat stress threshold. It is important to 
formulate a detailed description of what complises the change from thermoneutral to heat stress 
in terms of the Tb-Ta dynamics. 
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Figure 1. Pattern Obscured by Animal Variation: All Steers vs Single Steer 
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Figure 4. Examples of Spline with Knot =21.5C for a Single Steer 
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Figure 6. Difference Between Tb Challenge and Recovery for Given 
LevelofTa 
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Figure 9. Threshold and Patterns Ignoring and Managing Hysteresis 
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Figure 10. Animal Variation: Six Steers Same Scale 
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Figure 11. Possible Three-Segment Spline Model 
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Table 1. Splines Ignoring and Managing Hysteresis Using 
Nonlinear Fixed Effects Model (P=plateau, L=linear,Q=quadratic) 

Alc! Alec! SIc! msel Model Knot I 
I H t Ignormg Iys eresls: 

317.4 317.6 346.6 0.111 OKO 22.2579 
315.7 315.9 340.8 0.111 LKO 22.5459 
313.8 314 334.7 0.111 PKO 22.6675 

H Iyster eSls usmg Ch II a enge Data 
82.3 82.9 105.3 0.083 OKO 19.599 
70.6 71.1 90.4 0.085 LKO 26.5492 
78.4 78.7 94.8 0.084 PKO 19.7082 

Table 2. Spline Models with Knot Given (P=plateau, L=linear,Q=quadratic) 

AlGI BIGI dfl msel Model II 
Ignoring H t ys ere SIS: 

353.2 357.2 476 0.1113 0(21.5)0 
346.1 350.2 477 0.1117 L(21.5)0 
341.8 346 478 0.1123 P(21.5)0 

H t Iys er eSls uSing Ch II a enge o t a a 
113.9 117.2 193 0.0827 0(21.5)0 

107 110.2 194 0.0848 L(21.5)0 
100.5 103.7 195 0.0844 P(21.5)0 

Table 3. Linear-Quadratic Spline Model NLMIXED Results for Hysteresis: Challenge 
Y = bO + (bl+bL)* X + bII *XII + b2II*X2II + steer + e 

Standard 
Parameter Estimate Error DF t Value Pr> It I Alpha Lower Upper 
bO 38.0178 0.2406 4 158.04 <.0001 0.05 37.3499 38.6857 
b1 0.03472 0.007355 4 4.72 0.0092 0.05 0.01430 0.05514 
bI! -0.07460 0.01216 4 -6.13 0.0036 0.05 -0.1084 -0.04083 
b2I! 0.006929 0.000946 4 7.32 0.0018 0.05 0.004303 0.009556 
knoC 26.54 0.5985 4 44.36 <.0001 0.05 24.88 28.21 
s2e 0.1317 0.005435 4 24.24 <.0001 0.05 0.1166 0.1468 
s2steer 0.3127 0.1857 4 1.68 0.1674 0.05 -0.2028 0.8282 
s2bL 0.000245 0.000148 4 1.66 0.1729 0.05 -0.00017 0.8282 
cav12 -0.00417 0.004128 4 -1.01 0.3693 0.05 -0.01563 0.007289 
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