2,845 research outputs found

    Identification of a novel retroviral gene unique to human immunodeficiency virus type 2 and simian immunodeficiency virus SIVMAC

    Get PDF
    Human and simian immunodeficiency-associated retroviruses are extraordinarily complex, containing at least five genes, tat, art, sor, R, and 3' orf, in addition to the structural genes gag, pol, and env. Recently, nucleotide sequence analysis of human immunodeficiency virus type 2 (HIV-2) and simian immunodeficiency virus SIVMAC revealed the existence of still another open reading frame, termed X, which is highly conserved between these two viruses but absent from HIV-1. In this report, we demonstrate for the first time that the X open reading frame represents a functional retroviral gene in both HIV-2 and SIVMAC and that it encodes a virion-associated protein of 14 and 12 kilodaltons, respectively. We also describe the production of recombinant TrpE/X fusion proteins in Escherichia coli and show that sera from some HIV-2-infected individuals specifically recognize these proteins

    Fermions, Gauge Theories, and the Sinc Function Representation for Feynman Diagrams

    Get PDF
    We extend our new approach for numeric evaluation of Feynman diagrams to integrals that include fermionic and vector propagators. In this initial discussion we begin by deriving the Sinc function representation for the propagators of spin-1/2 and spin-1 fields and exploring their properties. We show that the attributes of the spin-0 propagator which allowed us to derive the Sinc function representation for scalar field Feynman integrals are shared by fields with non-zero spin. We then investigate the application of the Sinc function representation to simple QED diagrams, including first order corrections to the propagators and the vertex.Comment: 10 pages, Latex, 9 figure

    On a matrix partition conjecture

    Get PDF
    AbstractIn 1977, Ganter and Teirlinck proved that any 2t × 2t matrix with 2t nonzero elements can be partitioned into four submatrices of order t of which at most two contain nonzero elements. In 1978, Kramer and Mesner conjectured that any mt × nt matrix with kt nonzero elements can be partitioned into mn submatrices of order t of which at most k contain nonzero elements. We show that this conjecture is true for some values of m, n, t and k but that it is false in general

    Multi-dye theranostic nanoparticle platform for bioimaging and cancer therapy

    Get PDF
    Amit K Singh,1,2 Megan A Hahn,2 Luke G Gutwein,3 Michael C Rule,4 Jacquelyn A Knapik,5 Brij M Moudgil,1,2 Stephen R Grobmyer,3 Scott C Brown,2,61Department of Materials Science and Engineering, College of Engineering, 2Particle Engineering Research Center, College of Engineering, 3Division of Surgical Oncology, Department of Surgery, College of Medicine, 4Cell and Tissue Analysis Core, McKnight Brain Institute, 5Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, USA; 6DuPont Central Research and Development, Corporate Center for Analytical Science, Wilmington, DE, USABackground: Theranostic nanomaterials composed of fluorescent and photothermal agents can both image and provide a method of disease treatment in clinical oncology. For in vivo use, the near-infrared (NIR) window has been the focus of the majority of studies, because of greater light penetration due to lower absorption and scatter of biological components. Therefore, having both fluorescent and photothermal agents with optical properties in the NIR provides the best chance of improved theranostic capabilities utilizing nanotechnology.Methods: We developed nonplasmonic multi-dye theranostic silica nanoparticles (MDT-NPs), combining NIR fluorescence visualization and photothermal therapy within a single nanoconstruct comprised of molecular components. A modified NIR fluorescent heptamethine cyanine dye was covalently incorporated into a mesoporous silica matrix and a hydrophobic metallo-naphthalocyanine dye with large molar absorptivity was loaded into the pores of these fluorescent particles. The imaging and therapeutic capabilities of these nanoparticles were demonstrated in vivo using a direct tumor injection model.Results: The fluorescent nanoparticles are bright probes (300-fold enhancement in quantum yield versus free dye) that have a large Stokes shift (>110 nm). Incorporation of the naphthalocyanine dye and exposure to NIR laser excitation results in a temperature increase of the surrounding environment of the MDT-NPs. Tumors injected with these NPs are easily visible with NIR imaging and produce significantly elevated levels of tumor necrosis (95%) upon photothermal ablation compared with controls, as evaluated by bioluminescence and histological analysis.Conclusion: MDT-NPs are novel, multifunctional nanomaterials that have optical properties dependent upon the unique incorporation of NIR fluorescent and NIR photothermal dyes within a mesoporous silica platform.Keywords: bioluminescence, in vivo imaging, mesoporous silica nanoparticles, NIR fluorescence, photothermal ablation, theranosti

    Investigation of Systematic Bias in Radiometric Diameter Determination of Near-Earth Asteroids: the Night Emission Simulated Thermal Model (NESTM)

    Get PDF
    The Near-Earth Asteroid Thermal Model (NEATM, Harris, 1998) has proven to be a reliable simple thermal model for radiometric diameter determination. However NEATM assumes zero thermal emission on the night side of an asteroid. We investigate how this assumption affects the best-fit beaming parameter, overestimates the effective diameter and underestimates the albedo at large phase angles, by testing NEATM on thermal IR fluxes generated from simulated asteroid surfaces with different thermal inertia. We compare NEATM to radar diameters and find that NEATM overestimates the diameter when the beaming parameter is fitted to multi-wavelength observations and underestimates the diameter when the default beaming parameter is used. The Night Emission Simulated Thermal Model (NESTM) is introduced. NESTM models the night side temperature as an iso-latitudinal fraction (f) of the maximum day side temperature (Maximum temperature calculated for NEATM with beaming parameter = 1). A range of f is found for different thermal parameters, which depend on the thermal inertia. NESTM diameters are compared with NEATM and radar diameters, and it is shown that NESTM may reduce the systematic bias in overestimating diameters. It is suggested that a version of the NESTM which assumes the thermal inertia = 200 S.I. units is adopted as a default model when the solar phase angle is greater than 45 degrees.Comment: 48 pages, 10 Figures, 5 Table

    Epidermal Growth Factor Receptor Inhibition Modulates the Microenvironment by Vascular Normalization to Improve Chemotherapy and Radiotherapy Efficacy

    Get PDF
    Background: Epidermal growth factor receptor (EGFR) inhibitors have shown only modest clinical activity when used as single agents to treat cancers. They decrease tumor cell expression of hypoxia-inducible factor 1-a (HIF-1a) and vascular endothelial growth factor (VEGF). Hypothesizing that this might normalize tumor vasculature, we examined the effects of the EGFR inhibitor erlotinib on tumor vascular function, tumor microenvironment (TME) and chemotherapy and radiotherapy sensitivity. Methodology/Principal Findings: Erlotinib treatment of human tumor cells in vitro and mice bearing xenografts in vivo led to decreased HIF-1a and VEGF expression. Treatment altered xenograft vessel morphology assessed by confocal microscopy (following tomato lectin injection) and decreased vessel permeability (measured by Evan’s blue extravasation), suggesting vascular normalization. Erlotinib increased tumor blood flow measured by Power Doppler ultrasound and decreased hypoxia measured by EF5 immunohistochemistry and tumor O2 saturation measured by optical spectroscopy. Predictin
    • …
    corecore