On a Matrix Partition Conjecture

Richard A. Brualdi*
Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
GEŇa Hahn ${ }^{\dagger}$
Departément d'Informatique et Recherche Opérationelle, Université de Montréal, Montréal, Québec, Canada H3C $3 J 7$
Peter Horak ${ }^{\ddagger}$
Department of Mathematics, FEE Slovak Technical University, 81219 Bratislava, Slovakia
E. S. Kramer ${ }^{\S}$
Department of Mathematics \& Statistics, University of Nebraska, Lincoln, Nebraska 68588
Stephen Mellendorf
Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706

AND

Dale M. Mesner
Department of Mathematics \& Statistics, University of Nebraska, Lincoln, Nebraska 68588
Communicated by the Managing Editors
Received June 7, 1993

In 1977, Ganter and Teirlinck proved that any $2 t \times 2 t$ matrix with $2 t$ nonzero elements can be partitioned into four submatrices of order t of which at most two contain nonzero elements. In 1978, Kramer and Mesner conjectured that any $m t \times n t$ matrix with $k t$ nonzero elements can be partitioned into $m n$ submatrices of order t of which at most k contain nonzero elements. We show that this conjecture is true for some values of m, n, t and k but that it is false in general.

[^0]
Abstract

We show how a conjecture of Erdös which was proved by Olson can be used to prove the conjecture when $m=2$, thereby obtaining a generalization of the theorem of Ganter and Teirlinck. We also prove the conjecture for $k=3$. Finally, we consider a generalization to matrices of higher dimension. © 1995 Academic Press, Inc.

1. Introduction

The following theorem is proved by Ganter and Teirlinck in [4].
Theorem 1.1. Every $2 t \times 2 t$ matrix with $2 t$ nonzero elements can be partitioned into four submatrices of order t of which at most two contain nonzero elements.

This theorem is best possible in the sense that there exist $2 t$ by $2 t$ matrices with $2 t+1$ nonzero elements such that in every partition into four submatrices of order t, at least three contain nonzero elements. For example, if $t=3$ the matrix

$$
\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

cannot be partitioned into four submatrices of order 3 of which only two contain nonzero elements.

In 1978, Kramer and Mesner conjectured the following. ${ }^{1}$
Conjecture. Let m, n, t and k be positive integers. Then every $m t \times n t$ matrix with $k t$ nonzero elements can be partitioned into $m n$ submatrices of order t of which at most k contain nonzero elements.

For notational convenience we denote the assertion of this conjecture by $K M(m, n, k, t)$. Clearly, $K M(m, n, k, 1)$ is true. In addition, $K M(m, n, k, t)$ is true if $k=1$ or $k \geq m n$, and it is also true if $k=2$ by Theorem 1.1. However, as can be shown by exhaustive checking, the

[^1]partitioned matrix

$\left[\begin{array}{cc|cc|cc|cc}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
cannot be repartitioned into submatrices of order 2 of which at most six contain nonzero elements, and hence $K M(4,4,6,2)$ is false. Although $K M(m, n, k, t)$ is not always true, we show that it is true in situations other than that given in Theorem 1.1.

We now introduce a function related to the conjecture. Let $f(m, n, k, t)$ denote the largest number N such that each $m t \times n t$ matrix with N nonzero elements can be partitioned into submatrices of order t of which at most k contain nonzero elements. Clearly $f(m, n, m n, t)=m n t^{2}$. The assertion $K M(m, n, k, t)$ is equivalent to $f(m, n, k, t) \geq k t$. The above example shows that $f(4,4,6,2) \leq 11$.

Problem. Determine $f(m, n, k, t)$.
In Section 2, we show that $\operatorname{KM}(m, n, k, t)$ is true if $k=m n-1$ or $m n-2$, and that $K M(2,2, k, t)$ is true for all k and t. We also make a connection $K M(m, n, k, t)$ and the Zarankiewicz problem, and show that the conjecture does not in general give the correct order of magnitude for $f(m, n, k, t)$. In Section 3, we discuss some connections with a conjecture of Erdös proved by Olson, and show that $K M(2, n, k, t)$ is always true. We also prove that $K M(m, n, 3, t)$ is always true. In Section 4, we discuss a family of counterexamples to the conjecture. In Section 5, we consider a generalization of Theorem 1.1 to matrices of higher dimension.

Throughout we view our matrix A as an adjacency matrix of a bipartite graph $G(U, V ; E)$ where U is the set of vertices corresponding to the rows of A, V is the set of vertices corresponding to the columns of A, and E is the set of edges determined by the nonzero elements in A. In this context the conjecture can be formulated in terms of graph homomorphisms. Recall that a graph G^{\prime} is a homomorphic image of a graph G provided G^{\prime} can be obtained from G by a sequence of identifications of nonadjacent vertices. Suppose that $|U|=m t$ and $|V|=n t$. Then $f(m, n, k, t)$ is the largest number N such that every bipartite graph $G(U, V ; E)$ with $|E|=N$ has a homomorphic image $G^{\prime}\left(U^{\prime}, V^{\prime} ; E^{\prime}\right)$ where each vertex of U^{\prime} is
obtained by identifying t vertices of U, each vertex of V^{\prime} is obtained by identifying t vertices of V and $\left|E^{\prime}\right| \leq k$.

$$
\text { 2. } K M(m, n, k, t) \text { FOR } k \leq 2 \text { and for } k \text { LARGE }
$$

We first prove the following lemma.
Lemma 2.1. Let c, M, N and t be positive integers with $c \leq M$. Assume that $q_{1}, q_{2}, \ldots, q_{M t}$ is a nondecreasing sequence of nonnegative integers with $\sum_{i=1}^{M t} q_{i} \leq(M N-c) t$. Then $\sum_{i=1}^{c t} q_{i} \leq c t(N-1)$.

Proof. Suppose to the contrary that $\sum_{i=1}^{c t} q_{i} \geq 1+c t(N-1)$. Then $q_{c t} \geq N$, implying that $q_{i} \geq N$ for all i with $c t \leq i \leq M t$. Hence

$$
\begin{aligned}
\sum_{i=1}^{M t} q_{i} & =\sum_{i=1}^{c t} q_{i}+\sum_{i=c t+1}^{M t} q_{i} \\
& \geq 1+c t(N-1)+(M t-c t) N=1+(M N-c) t
\end{aligned}
$$

contradicting our assumption.
The following theorem shows that $K M(m, n, k, t)$ is true if k is either very small or very large.

Theorem 2.2. If $k \leq 2$ or $k \geq m n-2$, then $K M(m, n, k, t)$ is true.
Proof. Let A be an $m t$ by $n t$ matrix with $k t$ nonzero elements. If $k=1$, then the nonzero elements of A are contained in a submatrix of order t. If $k=2$, the nonzero elements of A are contained in a submatrix of order $2 t$ to which we can then apply Theorem 1.1. If $k \geq m n$, the conclusion holds trivially.

Let q_{i} be the number of nonzero elements in row i of A and rearrange rows so that $q_{1} \leq q_{2} \leq \cdots \leq q_{M t}$. If $k=m n-1$, then we apply Lemma 2.1 with $M=m, N=n$ and $c=1$ and obtain a $t \times n t$ submatrix with at most $(n-1) t$ nonzero elements and hence a $t \times t$ submatrix of zeros. Now assume that $k=m n-2$. Applying Lemma 2.1 with $M=m$, $N=n$ and $c=2$ we obtain a $2 t \times n t$ submatrix A^{\prime} with at most $2 t(n-1)$ $=(2 n-2) t$ nonzero elements. Let q_{j}^{\prime} be the number of nonzero elements in column j of A^{\prime} and rearrange columns so that $q_{1}^{\prime} \leq q_{2}^{\prime} \leq \cdots \leq$ $q_{n t}^{\prime}$. Applying Lemma 2.1 to this sequence with $M=n, N=2$, and $c=2$, we obtain a $2 t \times 2 t$ submatrix of A^{\prime} with at most $2 t$ nonzero elements. Application of Theorem 1.1 completes the proof.

If $m=n=2$, then Theorem 2.2 gives the following.

Corollary 2.3. $K M(2,2, k, t)$ is true for all k and t.
We now show that Corollary 2.3 is best possible for each $k=1,2$ and 3 in the sense that the conclusion need not hold if the number of nonzero elements is $k t+1$. Let A be a $2 t \times 2 t$ matrix. If A contains $t+1$ nonzero entries, then A can be partitioned into four submatrices of order t of which only one contains nonzero elements if and only if either no row contains more than one nonzero element or no column contains more than non nonzero element. There are many combinatorially different matrices A with $2 t+1$ nonzero elements that cannot be partitioned into four submatrices of order t of which only two contain nonzero elements. For example, if the $2 t+1$ nonzero elements of A occupy at least $t+1$ rows and at least $t+1$ columns, and the bipartite graph of A has a connected component which contains either $t+1$ vertices corresponding to rows or $t+1$ vertices corresponding to columns, ${ }^{2}$ then at least three submatrices of order t are required to contain all the nonzero elements.

In contrast to the above two cases, we now show that there is a unique matrix A (up to permutations of rows and columns) such that A is a $2 t \times 2 t$ matrix with $3 t+1$ nonzero elements which cannot be partitioned into four $t \times t$ matrices of which at most three contain nonzero elements. Our discussion is in terms of a bipartite graph $G(U, V ; E)$ with $3 t+1$ edges which does not contain an empty subgraph $H\left(U^{\prime}, V^{\prime} ; E^{\prime}=\varnothing\right)$ where $\left|U^{\prime}\right|=\left|V^{\prime}\right|=t, U^{\prime} \subset U$ and $V^{\prime} \subset V$. This is equivalent to the condition that for each subset W of cardinality t of U we have $|N(W)|>t$, where $N(W)$ is the set of all neighbors of vertices of W. We claim that G is isomorphic to a disjoint union of a cycle $C_{2 t+2}$ of length $2 t+2$ and a matching of size $t-1$. Let $U=\left\{u_{1}, \ldots, u_{2 t}\right\}$. After relabeling we can assume that $\operatorname{deg}\left(u_{i}\right) \leq \operatorname{deg}\left(u_{i+1}\right)$ for $1 \leq i \leq 2 t-1$. Now $\operatorname{deg}\left(u_{1}\right)+$ $\cdots+\operatorname{deg}\left(u_{t}\right)>t$, since otherwise $\left|N\left(u_{1}, \ldots, u_{t}\right)\right| \leq t$. Thus $\operatorname{deg}\left(u_{t}\right) \geq 2$ which implies $\operatorname{deg}\left(u_{2 t}\right) \leq 2$ and hence $0 \leq \operatorname{deg}\left(u_{i}\right) \leq 2$ for all i. Suppose U has $x \geq 1$ vertices of degree 0 . Then we have $t-1-2 x$ vertices of degree 1 and $t+1+x$ vertices of degree 2 . We have $|N(W)| \leq|V|=2 t$ for all subsets W of U and hence for W equal to the subset consisting of all vertices of U of degree 2 . As there are $t+1+x$ such vertices, two of them, say u and v, have a common neighbor, i.e., $|N(u, v)| \leq 3$. Let U_{i} be the set of vertices of degree $i,(i=0,1)$ and let U_{2} be a set of $x+1$ vertices of degree 2 such that u and v are in U_{2}. Let $W=U_{0} \cup U_{1} \cup U_{2}$. Then $|N(W)| \leq\left|N\left(U_{0}\right)\right|+\left|N\left(U_{1}\right)\right|+\left|N\left(U_{2}\right)\right| \leq x \cdot 0+(t-1-2 x)$. $1+(2 x+1) \leq t$, a contradiction as $|W|=t$. Thus all vertices in U (and in V) are of degree 1 or 2 . So, G consists of cycles and paths. If there were

[^2]a cycle of length at most t, then the vertices of the cycle in U together with a suitable number of vertices of U of degree 1 would form a set W with $|W|=t$ and $|N(W)| \leq t$, a contradiction. Suppose that G has a path of length at least two. Then there is a path $P=u v w \cdots z$ of length at least two with the initial vertex u from U. If $\operatorname{deg}(w)=2$, we take $W=U_{1} \cup\{w\}$ where U_{1} is the set of all vertices of U of degree 1 and obtain a contradiction, since $\left|U_{1}\right|=t-1$ and $|N(W)| \leq t$. If $\operatorname{deg}(w)=1$, then P is of length 2 and we obtain a contradiction by choosing as the t-th vertex of W an arbitrary vertex of degree 2 , since in this case $\left|N\left(U_{1}\right)\right| \leq t-2$. Our conclusion now follows by noting that if $G(U, V ; E)$ is isomorphic to the union of a cycle of length $2 t+2$ and a matching of size $t-1$, then $|N(W)|>t$ is valid for any subset W of cardinality t of U.

Corollary 2.3 and the above discussion imply that $f(2,2, k, t)=k t$ for $1 \leq k \leq 3$. This fact might suggest that whenever $K M(m, n, k, t)$ is true, then it is best possible in the sense that the number $k t$ is the largest number of nonzero entries for which the conclusion holds. We show that this is not the case. In addition we prove that $\operatorname{KM}(m, n, k, t)$ is true for $k=m n-p$ where p is small in comparison to $m n$. We obtain these results by making a connection with the famous Zarankiewicz problem.

To make the relation between $K M(m, n, k, t)$ and the Zarankiewicz problem transparent, we state the latter in the following form: Let $1 \leq c \leq a$ and $1 \leq d \leq b$. Determine $Z(a, b ; c, d)$, the smallest number N such that each $a \times b$ matrix with N zeros contains a $c \times d$ zero submatrix. ${ }^{3}$ We clearly have

$$
\begin{align*}
& f(m, n, m n-r s, t) \\
& \quad \geq(m t)(n t)-Z(m t, n t ; r t, s t) \text { with equality if } r=s=1 . \tag{1}
\end{align*}
$$

A result of Čulik [2] (see also Exercise 13, p. 361, in [1]) asserts that

$$
Z(a, b ; c, d)=(d-1) a+(c-1)\binom{b}{d}+1, \quad \text { if } a \geq(c-1)\binom{b}{d} .
$$

A result of Reiman [7] (see also part (i) of Thm. 2.6, p. 312, in [1]) asserts that

$$
Z(a, b ; c, 2) \leq \frac{a+\sqrt{a^{2}+4(c-1) a b(b-1)}}{2}+1 ;
$$

in particular,

$$
Z(a, a ; 2,2) \leq \frac{a+a \sqrt{4 a-3}}{2}+1 .
$$

[^3]Applying these results we obtain the following.
Theorem 2.4. We have
(i) $f(m, n, m n-p, t) \geq t m n$ for $m t \geq(p t-1)\binom{n t}{t}$ and $n \geq 2$, and
(ii) $f(m, n, m n-p, 2) \geq 2 m n$ for $p \leq n / 4$ and $n \leq m$.

In particular, $f\left(n, n, n^{2}-1,2\right) \geq 4 n^{2}-o\left(n^{2}\right)$.
Thus $K M$ (m, n, k, t) is true for the values given in the theorem, but it is not best possible. Indeed, Theorem 2.4 shows that for the case $m=n, t$ $=2$, and $k=n^{2}-1, K M(m, n, k, t)$ does not provide the correct order of magnitude for $f(m, n, k, t)$.

Corollary 2.3 and (1) with $m=n=2$ and $r=s=1$ imply that $Z(2 t, 2 t ;$ $t, t)=4 t^{2}-3 t$.

$$
\text { 3. } K M(m, n, k, t) \text { FOR } m=2 \mathrm{AND} \operatorname{FOR} k=3
$$

The following theorem was conjectured by Erdös [3] and proved by Olson [6] (see also [5]).

Theorem 3.1. If $\alpha_{1}, \ldots, \alpha_{2 t-1}$ is a sequence (repetitions allowed) of elements in the elementary Abelian group $Z_{t} \times Z_{t}$, then some subsequence has sum $(0,0)$.

Olson's theorem is a key ingredient in the proof of the following generalization of Theorem 1.1.

Theorem 3.2. $K M(2, n, k, t)$ is true for all n, k, and t.
Proof. We prove the theorem by induction on n. If $n=1$, the theorem clearly holds. Now assume that $n>1$. Let A be a $2 t \times n t$ matrix with $k t$ nonzero elements. Let q_{i} be the number of nonzero elements in the column i of $A(i=1, \ldots, n t)$, where we may assume $q_{1} \leq \cdots \leq q_{n t}$. First suppose that $k \geq n+1$. Then $\sum_{i=1}^{n t} q_{i}=k t \geq(n+1) t$ implies that $q_{(n-1) t+1}+\cdots+q_{n t} \geq 2 t$. Otherwise $q_{(n-1) t+1}=1$, and so $q_{i} \leq 1$ for $i=1, \ldots,(n-1) t$, and hence

$$
\begin{aligned}
\sum_{i=1}^{n t} q_{i} & =\sum_{i=1}^{(n=1) t} q_{i}+\sum_{i=(n-1) t+1}^{n t} q_{i} \\
& \leq(n-1) t+(2 t-1)=(n+1) t-1,
\end{aligned}
$$

a contradiction. Let A^{\prime} be the submatrix obtained from A by omitting its last t columns. Then A^{\prime} has at most $(k-2) t$ nonzero elements and by the induction hypothesis, there is a partition of A^{\prime} into $t \times t$ submatrices of
which at most $(k-2)$ have nonzero elements. This partition together with the two $t \times t$ submatrices determined by the last t columns of A yields the desired conclusion. Now suppose that $k \leq n-1$. Then $q_{1}=\cdots=$ $q_{t}=0$ and we apply the induction hypothesis to the submatrix A^{\prime} comprising the last $(n-1) t$ columns of A. Finally we suppost that $k=n$. Let C_{1}, \ldots, C_{s} be the connected components of the bipartite graph $G(U, V ; E)$ corresponding to the matrix A. For $i=1, \ldots, s$ let $\left(r_{i}, c_{i}\right)$ be the ordered pair consisting of the number of vertices of C_{i} in U and V, respectively. Then C_{i} has at least $r_{i}+c_{i}-1$ edges so that $\left(r_{1}+c_{1}-1\right)+\cdots+\left(r_{s}+c_{s}-1\right) \leq n t$ which, since $r_{1}+\cdots+r_{s}=2 t$ and $c_{1}+\cdots+c_{s}=n t$, implies that $s \geq 2 t$. We now interpret the integers r_{i} and s_{i} modulo t. Since $s \geq 2 t$, Theorem 3.1 implies that there is a proper subset J of $\{1, \ldots, s\}$ such that the sum of $\left(r_{j}, c_{j}\right)$ over J equals (et,ft) for some integers $e \leq 2$ and $f \leq n$. If $e=0$, then there are $f t$ components each consisting of one vertex in V (equivalently $f t$ columns of A containing only zeros), and we apply the induction hypothesis to the submatrix A^{\prime} obtained by deleting those zero columns. If $e=2$, then $f<n$ (otherwise J could not be a proper subset of $\{1, \ldots, s\}$) implying that there are $(n-f) t$ components each consisting of one vertex in V (equivalently, $(n-f) t$ columns in A containing only zeros), and we apply the induction hypothesis to the submatrix A^{\prime} obtained by deleting those zero columns. If $e=1$, we get that there are permutation matrices P and Q such that $P A Q$ is a direct sum of matrices of size $t \times f t$ and $t \times(n-f) t$. Therefore we have at least $f+(n-f)=n$ zero $t \times t$ submatrices, and the proof of the theorem is complete.

We next show that the conjecture is true for $k=3$. First we prove the following lemma which shows that $K M(k, k, k, t)$ is true for matrices whose nonzero elements are sufficiently spread out.

Lemma 3.3. Let A be a $k t \times k t$ matrix with $k t$ nonzero elements and assume that A has at most $2 t-1$ zero rows and columns. The A can be partitioned into k^{2} submatrices of order t of which at most k contain nonzero elements.

Proof. We prove the lemma by induction on k. If $k \leq 2$, the lemma follows from Theorem 2.2. Now assume that $k \geq 3$. Let C_{1}, \ldots, C_{s} be the connected components of the bipartite graph $G(U, V ; E)$ corresponding to the matrix A. For $i=1, \ldots, s$ let $\left(r_{i}, c_{i}\right)$ be the ordered pair consisting of the number of vertices of C_{i} in U and V, respectively. Then C_{i} has at least $r_{i}+c_{i}-1$ edges, and since $G(U, V ; E)$ has $k t$ edges, we have

$$
k t \geq \sum_{i=1}^{s}\left(r_{i}+c_{i}-1\right)=2 k t-s
$$

Thus the number of components satisfies $s \geq k t$. Let w_{i} equal the number of edges of $C_{i},(1 \leq i \leq s)$ and let $N=\left\{i: w_{i} \neq 0\right\}$. The hypothesis of the lemma implies that the number of trivial components of $G(U, V ; E)$ is at most $2 t-1$, and hence $|N| \geq k t-(2 t-1) \geq t+1$ since $k \geq 3$. We now interpret the integers w_{i} modulo t. Since every sequence of t integers modulo t contains by the pigeon-hole principle a subsequence which sums to zero modulo t, it follows that there is a proper subset J of N such that $\sum_{i \in J} w_{i}=e t$ for some positive integer $e<k$. This implies that there exists permutation matrices P and Q such that $P A Q=A_{1} \oplus A_{2}$ where A_{1} is an et \times et matrix with et nonzero elements (corresponding to the edges of the components C_{i} with i in J) and A_{2} is a $(k-e) t \times(k-e) t$ matrix with $(k-e) t$ nonzero elements. Since each of the matrices A_{1} and A_{2} can contain at most $2 t-1$ zero rows and columns, the lemma now follows by induction.

Theorem 3.4. $K M(m, n, 3, t)$ is true for all m, n and t.
Proof. Let A be an $m t \times n t$ matrix with $3 t$ nonzero elements. There exists a $3 t$ by $3 t$ submatrix B of A containing all the nonzero elements of A. If B either has at least t zero rows or at least t zero columns, the theorem follows from Theorem 3.2. Otherwise B has at most $t-1$ zero rows and at most $t-1$ zero columns, and the theorem follows from Lemma 3.3.

4. Counterexamples

In this section, we construct for each integer $t \geq 2$ a counterexample to $K M(m, n, k, t)$. Using our identification of matrices with bipartite graphs, we formulate our constructions as bipartite graphs.

In the next theorem we identify a class of matrices for which the bound on the number of submatrices of order t containing nonzero elements as stated in the conjecture is tight. First we prove the following lemma.

Lemma 4.1. Let A be a t by nt matrix with $k t$ nonzero entries. Assume that the associated bipartite graph $G(U, V ; E)$ has no cycles. Then for each partition of A into n submatrices of order t, at least k submatrices contain nonzero elements.

Proof. Since $G(U, V ; E)$ has no cycles, it is a forest with $k t$ edges. Thus, since $|U|=t$, the number of nonzero columns of A_{i} is at least $(k-1) t+1$. Hence for any partition of A into n submatrices of order t, at least k of the submatrices contain nonzero entries.

Theorem 4.2. Let A be an mt by nt matrix with $k t$ nonzero entries such that the number of nonzero entries in each row is congruent to l modulo t for

B
Fig. 1. $\quad G(1,3,5)$.
some integer l. Assume that the associated bipartite graph $G(U, V, E)$ has no cycles of length $2 t$ or less. Then for each partition of A into $m n$ submatrices of order t, at least k submatrices contain nonzero elements.

Proof. Fix any partition of A into $t \times n t$ submatrices A_{1}, \ldots, A_{m}. Consider any submatrix A_{i}. Since the number of nonzero entries in each row of A_{i} is l modulo t, the number of nonzero entries of A_{i} is $q_{i} t$ for some integer q_{i}. Since $G(U, V ; E)$ has no cycles of length at most $2 t$, the bipartite graph $G\left(U_{i}, V ; E_{i}\right)$ associated with A_{i} has no cycles and hence is a forest with $q_{i} t$ edges. Thus by Lemma 4.1, for any partition of A_{i} into n submatrices of order t, at least q_{i} of the submatrices contain nonzero entries. It follows that for any partition of A into $m n t \times t$ submatrices at least $k=q_{1}+\cdots+q_{m}$ submatrices contain nonzero entries.

We remark that the proof of Theorem 4.2 implies that if k submatrices of order t contain all nonzero entries of A, then exactly q_{i} of them are contained in A_{i} for each i.

Let $G\left(p_{1}, \ldots, p_{s}\right)$ denote a graph consisting of a top vertex T and a bottom vertex B and disjoint paths of lengths p_{1}, \ldots, p_{s} joining T and B, called the strands of $G\left(p_{1}, \ldots, p_{s}\right)$. The graph $G(1,3,5)$ is drawn in Fig. 1. The number of edges of $G\left(p_{1}, \ldots, p_{s}\right)$ equals $p_{1}+\cdots+p_{s}$, and the number of vertices is $p_{1}+\cdots+p_{s}-s+2$. Each of the vertices T and B has degree equal to s and all other vertices have degree equal to 2 . If all p_{i} are odd, then $G\left(p_{1}, \ldots, p_{s}\right)$ is a bipartite graph $G(U, V ; E)$ with $|U|=|V|$ and without loss of generality we assume that $B \in U$ and $T \in V$,

Theorem 4.3. Let t be an integer with $t \geq 2$. Let s be an integer with $s \geq 3 t^{2}-3 t+2$ and $s \equiv 2(\bmod t)$ Let p_{1}, \ldots, p_{s} be distinct odd integers
such that each $p_{i} \geq t$ and $p_{1}+\cdots+p_{s}-s+2 \equiv 0(\bmod 2 t)$. Then the matrix A associated with the bipartite graph $G\left(p_{1}, \ldots, p_{s}\right)$ is a counterexample to $K M(n, n, k, t)$ for

$$
n=\frac{p_{1}+\cdots+p_{s}-s+2}{2 t} \quad \text { and } \quad k=\frac{p_{1}+\cdots+p_{s}}{t}
$$

Proof. The hypotheses imply that n and k are integers and that both the rows and columns of the adjacency matrix A of the bipartite graph $G\left(p_{1}, \ldots, p_{s}\right)$ satisfy the assumptions of Theorem 4.2. Thus for each partition of A into n^{2} submatrices $A_{i j}(1 \leq i, j \leq n)$ of order t, at least k submatrices contain nonzero elements. Assume to the contrary that there exists a partition of A for which exactly k submatrices contain nonzero elements. Let U_{1}, \ldots, U_{n} and V_{1}, \ldots, V_{n} be the corresponding partition of the vertices of U and V, respectively, where $B \in U_{1}$ and $T \in V_{1}$. For each i, we speak of the vertices in U_{i} as being matched by the partition. Similarly, the vertices in each V_{j} are matched by the partition. Since $G\left(p_{1}, \ldots, p_{s}\right)$ is bipartite, the number of edges incident with vertices in U_{1} is $s+2(t-1)=s+2 t-2$. It follows from the remark after the proof of Theorem 4.2 that the number of submatrices $A_{1 j}$ which contain nonzero elements is $x=(s+2 t-2) / t$ and since $s \geq 3 t^{2}-3 t+2$, we have $x \geq 3 t-1$. Without loss of generality we assume that these submatrices are $A_{11}, \ldots, A_{1 x}$. Let $V^{\prime}=V_{1} \cup \cdots \cup V_{x}$. The number of strands which contain no vertex of U_{1} different from B is $w \geq s-(t-1)=s-t+1$. Let W be the w vertices of these strands which are adjacent to B. Then $W \subseteq V^{\prime}$ and $\left|V^{\prime} \backslash W\right|=x t-w \leq 3 t-3$. Thus the number of V_{j} with $1 \leq j \leq x$ which have a nonempty intersection with $V^{\prime} \backslash W$ is at most $3 t-3$. Since $x \geq 3 t-1$, there exist integers e_{0} and f_{0} with $1 \leq e_{0}<f_{0}$ $\leq x$ such that $V_{e_{0}} \cup V_{f_{0}} \subseteq W$.

Now consider the nt by t submatrix of A determined by the columns in $V_{e_{0}}$. Since $T \notin V_{e_{0}}$, this submatrix has exactly $2 t$ nonzero entries, and it follows from the remark after the proof of Theorem 4.2 that there are exactly two nonzero submatrices of order t in the columns $V_{e_{0}}$. Since B is adjacent to each of the vertices in $V_{e_{0}}$ and B is an element of U_{1}, one of these submatrices is $A_{1 e_{0}}$. Let the other submatrix be $A_{e_{1} e_{0}}$. Since the other t vertices adjacent to $V_{e_{0}}$ are not matched to B, they must be matched together and thus form the set $U_{e_{1}}$. A similar argument shows that the set of t vertices of $V \backslash V_{e_{0}}$ which are adjacent to $U_{e_{1}}$ are matched together and thus form a set $V_{e_{2}}$. Continuing like this, we eventually determine a set $U_{e_{i}}$ such that T is adjacent to $U_{e_{i}}$. Since the strands have distinct lengths, T is adjacent to exactly one vertex in $U_{e_{i}}$. Thus the set V_{1} which contains T also contains the $t-1$ other vertices adjacent to $U_{e_{i}}$ not in $V_{e_{i-1}}$. Repeating this argument beginning with $V_{f_{0}}$, we obtain $t-1$
vertices on the strands through $V_{f_{0}}$ which are also contained in V_{1}. This implies that $\left|V_{1}\right| \geq 2 t-1>t$, a contradiction.

5. Matrix Partitioning in Higher Dimensions

In this section we consider a generalization of Theorem 1.1 to matrices of higher dimension.

Let d and n be positive integers. A d-dimensional matrix of order n is an array

$$
A=\left[a_{i_{1} i_{2} \cdots i_{d}}\right]\left(1 \leq i_{1}, i_{2}, \ldots, i_{d} \leq n\right) .
$$

Let t and k be positive integers. Then we denote by $g(d, t, k)$ the maximum number M such that every d-dimensional $2 t \times 2 t \times \cdots \times 2 t$ matrix with M nonzero elements can be partitioned into $2^{d} t \times \cdots \times t$ submatrices of which at most k contain nonzero elements. Clearly $g(d, t, 1)=t$ and $g\left(d, t, 2^{d}\right)=(2 t)^{d}$ for all t and d.

The main result of this section is the somewhat surprising fact that the number of nonzero elements which can always be stuffed into at most two $t \times t \times \cdots \times t$ submatrices, decreases from $2 t$ when $d=2$, to only $t+1$ when the dimension $d \geq t+2$.

Theorem 5.1. For $d \geq 2$ and arbitrary $t, g(d, t, 2)=t+\lceil t /(d-1)\rceil$.
Proof. As before, we employ a graph-theoretical formulation of our problem. Let A_{1}, \ldots, A_{d} be pairwise disjoint sets. Denote by $G\left(A_{1}, \ldots, A_{d} ; E\right)$ a d-uniform hypergraph with vertex set $V(G)=$ $\cup_{i-1}^{d} A_{i}$ where each edge e of E has the property that $\left|e \cap A_{i}\right|=1$ for each $i=1, \ldots, d$. We associate with a d-dimensional $2 t \times 2 t \times \cdots \times 2 t$ matrix $A=\left[a_{j_{1} j_{2}} \cdots j_{d}\right]$ a d-uniform hypergraph $G\left(A_{1}, \ldots, A_{d} ; E\right)$ where $\left|A_{i}\right|=2 t$ and $a_{i}=\left\{v_{1, i}, \ldots, v_{2 t, i}\right\},(i=1,2, \ldots, d)$ as follows: an edge $e=\left\{v_{j_{1}, 1} v_{j_{2}, 2}, \ldots, v_{j_{d}, d}\right\}$ belongs to E if and only if $a_{j_{1} j_{2} \ldots j_{d}}=1$. To show that a matrix A can be partitioned into $t \times t \times \cdots \times t$ submatrices of which at most k contain nonzero elements is equivalent to showing that each A_{i} can be partitioned into two sets $B_{i, 1}$ and $B_{i, 2}$ of cardinality t, such that at most k of the 2^{d} subgraphs induced by vertex sets $B_{1, i_{1}} \cup B_{2, i_{2}}$ $\cup \cdots \cup B_{d, i_{d}},\left(1 \leq i_{j} \leq 2, j=1, \ldots, d\right)$ contain an edge.

We prove the latter assertion by induction on d. If $d=2$, we get $g(2, t, 2)=2 t$ by Theorem 1.1. Now assume that $d>2$. Let p_{i} be the number of vertices of A_{i} of positive degree. First we prove $g(d, t, 2)<t$ $+\lceil t /(d-1)\rceil+1$ by construction a special hypergraph. Let $G\left(A_{1}, \ldots, A_{d} ; E\right)$ with $\left|A_{i}\right|=2 t,(i=1, \ldots, d)$ be a d-uniform hypergraph with $t+\lceil t /(d-1)\rceil+1$ edges, where E is defined recursively as
follows. The edge e_{1} is an arbitrary edge. The k th edge is defined so that $e_{k} \cap e_{i}=\emptyset$ for $i=1, \ldots, k-2$, and $\left|e_{k} \cap e_{k-1}\right|=1$, where the vertex v in $e_{k} \cap e_{k-1}$ belongs to A_{j} for j the unique integer satisfying $1 \leq j \leq d$ and $j \equiv k(\bmod d)$. Clearly, $G\left(A_{1}, \ldots, A_{d} ; E\right)$ is a connected hypergraph and it is a matter of routine calculation to show that $p_{i}>t$ for $i=1, \ldots, d$. If there were a partition of each A_{i} into $B_{i, 1}$ and $B_{i, 2}$ such that at most two of the 2^{d} induced subgraphs of G contain an edge, then we could employ a notation such that these two nonempty subgraphs are induced either by:
(i) $B_{1,1} \cup B_{2,1} \cup \cdots \cup B_{d, 1}$ and $B_{1,2} \cup B_{2,2} \cup \cdots \cup B_{d, 2}$, or $b y$
(ii) $B_{1,1} \cup B_{2,1} \cup \cdots \cup B_{d, 1}$ and $B_{1,1} \cup \cdots \cup B_{j, 1} \cup B_{j+1,2} \cup$ $\cdots \cup B_{d, 2}$ for some $j \geq 1$.
However, case (i) cannot happen as G is connected, and case (ii) is excluded as $p_{i}>t$ for all i.

To prove the reverse inequality $g(d, t, 2) \geq t+\lceil t /(d-1)]$, we suppose that $G\left(A_{1}, \ldots, A_{d} ; E\right)$ has at most $t+\lceil t /(d-1)\rceil$ edges. We consider two cases.

Case (a). There is an i with $1 \leq i \leq d$ such that $p_{i} \leq t$. Without loss of generality we assume that $p_{1} \leq t$. Form a $(d-1)$-uniform hypergraph $G^{\prime}\left(A_{1}, \ldots, A_{d-1} ; E^{\prime}\right)$ where $e^{\prime}=(u, v, \ldots, w)$ belongs to E^{\prime} provided there is a vertex z from A_{d} such that $e=(u, v, \ldots, w, z)$ is an edge of E. Denote by $e(G)$ the number of edges of G. Thus $e\left(G^{\prime}\right) \leq e(G)=t+$ $\lceil t /(d-1)\rceil$ and by the induction hypothesis there is a partition B^{\prime} of each of the sets A_{1}, \ldots, A_{d-1} into two parts such that at most two of the induced subgraphs are nonempty. To get a desired partition B of A_{1}, \ldots, A_{d} it is sufficient to extend B^{\prime} by partitioning A_{d} into two sets $B_{d, 1}$ and $B_{d, 2}$, where both $B_{d, 1}$ and $B_{d, 2}$ have cardinality t and $B_{d, 1}$ contains all vertices of A_{d} of nonzero degree.

Case (b). $\quad p_{i}>t$ for all $i=1, \ldots, d$. Since a connected d-uniform hypergraph H with $e(H)$ edges has at most $e(H)(d-1)+1$ vertices of nonzero degree, our hypergraph G in this case has at least two connected components (containing at least one edge). Suppose $H\left(C_{1}, \ldots, C_{d} ; E^{\prime}\right)$ is a connected component of G with $\left|C_{i}\right|>t$ for at least one of $i=1, \ldots, d$. Put $m=\min \left\{\left|C_{i}\right|: i=1, \ldots, d\right\}$. Clearly $m \leq t$, and without loss of generality we assume that $\left|C_{1}\right|=m$. Then $\left|C_{1}\right|+\cdots+\left|C_{d}\right| \geq t+1+$ $(d-1) m$ which in turn implies that H has at least $m+\lceil t /(d-1)\rceil$ edges. Hence, $e(G)-e(H) \leq t-m$, which contradicts $p_{1}>t$ as $p_{1} \leq$ $\left|C_{1}\right|+t-m=t$. Therefore, $\left|C_{i}\right| \leq t$ for $i=1, \ldots, d$ and each connected component H of G. We show that there is a partition of the A_{i} 's into $B_{i, 1}$ and $B_{i, 2}$ such that each edge of G belongs either to a subgraph
induced by $B_{1,1} \cup B_{2,1} \cup \cdots \cup B_{d, 1}$ or induced by $B_{1,2} \cup B_{2,2} \cup \cdots \cup$ $B_{d, 2}$. If there is a connected component $H\left(C_{1}, \ldots, C_{d} ; E^{\prime}\right)$ of G with at least $[t /(d-1)]$ edges, then (having in mind that $\left|C_{i}\right| \leq t$ for $i=1, \ldots, d$) we arrive at the required partition by letting $B_{i, 1}$ be a superset of C_{i} and letting $B_{i, 2}$ contain all the vertices of $A_{i}-C_{i}$ of nonzero degree (there are at most t of them as $E-E^{\prime}$ has at most t edges). Finally, we need to take care of the case when all connected components of G have less than $t+\lceil t /(d-1)\rceil$ edges. Then we form a subgraph H of G by taking a union of connected components H_{1}, \ldots, H_{s} such that $[t /(d-1)] \leq e(H)$ $=e\left(H_{1}\right)+e\left(H_{2}\right)+\cdots+e\left(H_{s}\right) \leq t$. Again, $e(H) \leq t$ implies $\left|C_{i}\right| \leq t$ for each $i=1, \ldots, t$ and we can proceed as in the previous case.

Acknowledgments

The authors wish to thank Thomas Marley for some key references. This research was done while the third named author (PH) was visiting Simon Fraser University; he would like to thank the Department of Mathematics and Statistics for its hospitality.

References

1. B. Bollobás, "Extremal Graph Theory," Academic Press, New York, 1978.
2. K. Čulik, Teilweise Lösung eines verallgemeinerten Problems von K. Zarankiewicz, Ann. Polon. Math. 3 (1956), 341-348.
3. P. Erdös, A. Ginzburg, and A. Ziv, Bull. Res. Council Israel 10F (1961), 41-43.
4. B. Ganter and L. Teirlinck, A combinatorial lemma, Math. Z. 154 (1977), 153-156.
5. A. Geroldinger and R. Schneider, On Davenport's constant, J. Combin. Theory 61 (1992), 147-152.
6. J. E. Olson, A combinatorial problem on finite abelian groups I and II, J. Number Theory 1 (1969), 8-10 and 195-199.
7. I. Reiman, Über ein Problem von K. Zarankiewicz, Acta. Math. Acad. Sci. Hungar. 9 (1958), 269-279.

[^0]: *Research partially supported by NSF Grant DMS-9123318.
 ${ }^{*}$ Research partially supported by à grant from the National Science and Research Council of Canada.
 ${ }^{\ddagger}$ Research partially supported by Slovak Grant Agency, Grant 1/120/93.
 ${ }^{8}$ Research supported by NSA Grant MDA $904-91-\mathrm{H}-0032$ and by the Center for Communication and Information Science at the University of Nebraska.

[^1]: ${ }^{1}$ This conjecture was stated in the talk "On the Distribution of Nonzero Elements in Certain Sparse Matrices" given by D. M. Mesner at the 9th Southeastern Conference held at Florida Atlantic University in 1978.

[^2]: ${ }^{2}$ For instance, the bipartite graph of A is, except for isolated vertices, a tree of order $2 t+2$ with $t+1$ vertices corresponding to rows and $t+1$ vertices corresponding to columns.

[^3]: ${ }^{3}$ Usually the Zarankiewicz problem is formulated with the zeros and nonzeros interchanged.

