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We show how a conjecture of Erdos which was proved by Olson can be used to
prove the conjecture when m = 2, thereby obtaining a generalization of the
theorem of Ganter and Teirlinck. We also prove the conjecture for & = 3. Finally,
we consider a generalization to matrices of higher dimension. © 1995 Academic

Press, Inc.

1. INTRODUCTION
The following theorem is proved by Ganter and Teirlinck in [4].

Tueorem 1.1. Every 2t X 2t matrix with 2t nonzero elements can be
partitioned into four submatrices of order t of which at most two contain
nonzero elements.

This theorem is best possible in the sense that there exist 2¢ by 2¢
matrices with 2¢ + 1 nonzero elements such that in every partition into
four submatrices of order ¢, at least three contain nonzero elements. For
example, if + = 3 the matrix

OO OO O =
oSO OO Oo
oo oo C

O D= e
SO OO
OO OO

cannot be partitioned into four submatrices of order 3 of which only two
contain nonzero elements.
In 1978, Kramer and Mesner conjectured the following.'

Conjecture. Let m, n, t and k be positive integers. Then every mt X nt
matrix with k¢t nonzero elements can be partitioned into mn submatrices
of order ¢ of which at most & contain nonzero elements.

For notational convenience we denote the assertion of this conjecture
by KM(m, n, k, t). Clearly, KM(m, n, k,1) is true. In addition,
KM(m,n, k,t) is true if k =1 or kK > mn, and it is also true if k = 2 by
Theorem 1.1. However, as can be shown by exhaustive checking, the

"This conjecture was stated in the talk “On the Distribution of Nonzero Elements in
Certain Sparse Matrices” given by D. M. Mesner at the 9th Southeastern Conference held at
Florida Atlantic University in 1978.
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partitioned matrix

1

1 0J0 0]0 00 0
1 1]0 0]0 00 0
0 1]0 o{0 0[O0 0
0 1|1 1|1 0[0 0
0 0[{0 0[1 1[0 ©
0 0|1 0|0 00 ©
0 0]0 0f{0 01 0
(0 0J0o o0 0|0 O]

cannot be repartitioned into submatrices of order 2 of which at most six
contain nonzero elements, and hence KM(4,4,6,2) is false. Although
KM(m, n, k, t) is not always true, we show that it is true in situations other
than that given in Theorem 1.1.

We now introduce a function related to the conjecture. Let f(m, n, k, t)
denote the largest number N such that each mt X nt matrix with N
nonzero elements can be partitioned into submatrices of order ¢ of which
at most k contain nonzero elements. Clearly f(m, n, mn, t) = mnt*. The
assertion KM(m, n, k,t) is equivalent to f(m,n, k,t) > kt. The above
example shows that f(4,4,6,2) < 11.

Problem. Determine f(m,n, k,1).

In Section 2, we show that KM(m,n,k,t) is true if k=mn — 1 or
mn — 2, and that KM(2,2, k,t) is true for all £ and . We also make a
connection KM(m, n, k,t) and the Zarankiewicz problem, and show that
the conjecture does not in general give the correct order of magnitude for
f(m, n, k, t). In Section 3, we discuss some connections with a conjecture
of Erdos proved by Olson, and show that KM(2, n, k, t) is always true. We
also prove that KM(m,n,3,t) is always true. In Section 4, we discuss a
family of counterexamples to the conjecture. In Section 5, we consider a
generalization of Theorem 1.1 to matrices of higher dimension.
Throughout we view our matrix A as an adjacency matrix of a bipartite
graph G(U, V; E) where U is the set of vertices corresponding to the rows
of A,V is the set of vertices corresponding to the columns of A4, and E is
the set of edges determined by the nonzero elements in 4. In this context
the conjecture can be formulated in terms of graph homomorphisms.
Recall that a graph G’ is a homomorphic image of a graph G provided G’
can be obtained from G by a sequence of identifications of nonadjacent
vertices. Suppose that |U| = ms and V| = nt. Then f(m, n, k,t) is the
largest number N such that every bipartite graph G(U, V; E) with |E| = N
has a homomorphic image G'(U',V'; E') where each vertex of U’ is
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obtained by identifying ¢ vertices of U, each vertex of V' is obtained by
identifying ¢ vertices of V and |E'| < k.

2. KM(m,n,k,t) FOrR k <2 AND FOR k LARGE

We first prove the following lemma.

Lemma 2.1.  Let ¢, M, N and t be positive integers with ¢ < M. Assume
that q,, q,, . .., 4y, is a nondecreasing sequence of nonnegative integers with
Mg, < (MN — ¢)t. Then £ g, < ct(N — 1).

Proof. Suppose to the contrary that X§f g, > 1 + c#(N — 1). Then
4., = N, implying that g, > N for all i with ¢t < i < Mt. Hence

It

ct Mt
Z‘L’"’ Z 4q;
i=1 i=ct+1

l+ct(N—-1)+ (Mt —ct)N=1+ (MN - ¢)t,

Mt
Z d;
i=1

v

contradicting our assumption. |

The following theorem shows that KM(m, n, k, t) is true if k is either
very small or very large.

TueoreM 2.2. Ifk <2 ork > mn — 2, then KM(m, n, k, t) is true.

Proof. let A be an mt by nt matrix with k¢ nonzero elements. If
k =1, then the nonzero elements of 4 are contained in a submatrix of
order ¢. If £ = 2, the nonzero elements of A are contained in a submatrix
of order 2¢ to which we can then apply Theorem 1.1. If k > mn, the
conclusion holds trivially.

Let g, be the number of nonzero elements in row i of A4 and rearrange
rows so that g, <¢q,< '+ <qu, If k=mn—1, then we apply
Lemma 2.1 with M =m, N =n and ¢ = 1 and obtain a ¢ X nt submatrix
with at most (n — 1)t nonzero elements and hence a ¢ X ¢ submatrix of
zeros. Now assume that k& = mn — 2. Applying Lemma 2.1 with M = m,
N = n and ¢ = 2 we obtain a 2¢ X nt submatrix 4’ with at most 2¢t(n — 1)

= (2n — 2)t nonzero elements. Let g; be the number of nonzero cle-
ments in column j of A' and rearrange columns so that ¢} <g, < -+ <
q,,,- Applying Lemma 2.1 to this sequence with M =n, N = 2, and ¢ = 2,
we obtain a 2¢ X 2¢ submatrix of 4’ with at most 2¢ nonzero elements.
Application of Theorem 1.1 completes the proof. |

If m = n = 2, then Theorem 2.2 gives the following.
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CoroLLARY 2.3, KM(2,2, k, t) is true for all k and t.

We now show that Corollary 2.3 is best possible for each £ = 1, 2 and 3
in the sense that the conclusion need not hold if the number of nonzero
elements is kt + 1. Let A be a 2t X 2¢ matrix. If 4 contains ¢ + 1
nonzero entries, then A can be partitioned into four submatrices of order
t of which only one contains nonzero elements if and only if either no row
contains more than one nonzero element or no column contains more
than non nonzero element. There are many combinatorially different
matrices A4 with 2¢ + 1 nonzero elements that cannot be partitioned into
four submatrices of order ¢ of which only two contain nonzero elements.
For example, if the 2¢ + 1 nonzero elements of 4 occupy at least ¢ + 1
rows and at least ¢ + 1 columns, and the bipartite graph of 4 has a
connected component which contains either ¢ + 1 vertices corresponding
to rows or ¢ + 1 vertices corresponding to columns,’ then at least three
submatrices of order ¢ are required to contain all the nonzero elements.

In contrast to the above two cases, we now show that there is a unique
matrix A (up to permutations of rows and columns) such that A4 is a
2t X 2¢ matrix with 3¢ + 1 nonzero elements which cannot be partitioned
into four ¢ X ¢ matrices of which at most three contain nonzero elements.
Our discussion is in terms of a bipartite graph G(U,V; E) with 3¢t + 1
edges which does not contain an empty subgraph H(U',V'; E' = &) where
{U'| = |V'| =¢, U cU and V' C V. This is equivalent to the condition
that for each subset W of cardinality ¢ of U we have |[IN(W)| > ¢, where
N(W) is the set of all neighbors of vertices of W. We claim that G is
isomorphic to a disjoint union of a cycle C,, , of length 2¢ + 2 and a
matching of size t — 1. Let U = {u,,...,u,,}. After relabeling we can
assume that deg(u;) < deg(u; ) for 1 <i <2 — 1. Now deg(u,) +
-+- +deg(u,) > 1, since otherwise |N(u,...,u,)| <t. Thus deg(u,) > 2
which implies deg(u,,) < 2 and hence 0 < deg(y;) < 2 for all i. Suppose
U has x > 1 vertices of degree 0. Then we have ¢t — 1 — 2x vertices of
degree 1 and ¢ + 1 + x vertices of degree 2. We have INW)| < [V]| = 2¢
for all subsets W of U and hence for W equal to the subset consisting of
all vertices of U of degree 2. As there are ¢t + 1 + x such vertices, two of
them, say u and v, have a common neighbor, i.e., IN(u,v)| < 3. Let U, be
the set of vertices of degree i, (i = 0,1) and let U, be a set of x + 1
vertices of degree 2 such that u and v are in U,. Let W = U, U U, U U,,.
Then [NOW)| < INWUD! + INWUDI + INUDI <x -0+ (r —1—2x)-
1+ (2x + 1) < ¢, a contradiction as |W| = ¢. Thus all vertices in U (and
in V') are of degree 1 or 2. So, G consists of cycles and paths. If there were

2 . . . . . .

For instance, the bipartite graph of A is, except for isolated vertices, a tree of order
2t + 2 with r + 1 vertices corresponding to rows and ¢ + 1 vertices corresponding to
columns.
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a cycle of length at most ¢, then the vertices of the cycle in U together with
a suitable number of vertices of U of degree 1 would form a set W with
|[W| =t and [N(W)| < t, a contradiction. Suppose that G has a path of
length at least two. Then there is a path P = uow - -- z of length at least
two with the initial vertex u from U. If deg(w) = 2, we take W = U, U {w}
where U, is the set of all vertices of U of degree 1 and obtain a
contradiction, since |U;| =¢ — 1 and IN(W)| < ¢t. If deg(w) = 1, then P
is of Iength 2 and we obtain a contradiction by choosing as the #-th vertex
of W an arbitrary vertex of degree 2, since in this case |[N(U)| <t — 2.
Our conclusion now follows by noting that if G(U,V; E) is isomorphic to
the union of a cycle of length 2¢ + 2 and a matching of size ¢ — 1, then
IN(W)| > ¢t is valid for any subset W of cardinality ¢ of U.
Corollary 2.3 and the above discussion imply that (2,2, k,t) = kt for

1 < k < 3. This fact might suggest that whenever KM(m, n, k, ) is true,
then it is best possible in the sense that the number k¢ is the largest
number of nonzero entries for which the conclusion holds. We show that
this is not the case. In addition we prove that KM(m,n, k,t) is true for
k =mn — p where p is small in comparison fo mn. We obtain these
results by making a connection with the famous Zarankiewicz problem.
~To make the relation between KM(m,n, k,t) and the Zarankiewicz
problem transparent, we state the latter in the following form: Let
1<c<aandl<d=<b. Determine Z(a, b; c, d), the smallest number N
such that each a X b matrix with N zeros contains a ¢ X d zero submatrix.’
We clearly have

f(m,n,mn —rs,t)
> (mt)(nt) — Z(mt,nt;rt,st) with equality if r =5 = 1. (1)
A result of Culik [2] (see also Exercise 13, p. 361, in [1]) asserts that

Z(a,b;c,d)=(d—1)a+(c—1)(Z)+1, ifaz(c—l)(fl).

A result of Reiman [7] (see also part (i) of Thm. 2.6, p. 312, in [1]) asserts
that

a + ya® + 4(c — 1)ab(b - 1) 1
2 2

Z(a,b;c,2) <

in particular,

a+avda — 3
Z(a,a;2,2) < — + 1.

3Usually the Zarankiewicz problem is formulated with the zeros and nonzeros inter-
changed.
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Applying these results we obtain the following.

THeEOREM 2.4. We have

(D) fGn,n,mn — p,t) = tmn for mt > (pt — 1)('3’) and n > 2, and
() flm,n,mn —p,2) = 2mn forp <n/4 and n < m.
In particular, f(n,n,n*> — 1,2) = 4n* — o(n?).

Thus KM (m, n, k, t) is true for the values given in the theorem, but it
is not best possible. Indeed, Theorem 2.4 shows that for the case m = n, ¢
=2 and k = n®>— 1, KM(m, n, k,t) does not provide the correct order
of magnitude for f(m, n, k, t).

Corollary 2.3 and (1) with m = n = 2 and r = s = 1 imply that Z(2¢,2¢;
t,t) = 4t? — 3t.

3. KM (m,n, k,t)FOR m = 2 AND FOR k = 3

The following theorem was conjectured by Erdds [3] and proved by
Olson [6] (see also [5]).

THEOREM 3.1. If a@,...,a,,_,; is a sequence (repetitions allowed) of
elements in the elementary Abelian group Z, X Z,, then some subsequence
has sum (0, 0).

Olson’s theorem is a key ingredient in the proof of the following
generalization of Theorem 1.1.

THEOREM 3.2. KM (2, n,k,t) is true for all n, k, and t.

Proof. We prove the theorem by induction on x. If n = 1, the theorem
clearly holds. Now assume that n > 1. Let 4 be a 21 X nt matrix with k¢
nonzero elements. Let g, be the number of nonzero elements in the
column i of 4 (i =1,...,nt), where we may assume ¢, < '*- <gq,,
First suppose that k > n + 1. Then X} g, = kt = (n + 1)t implies that
Aen-1y+1 T 4, = 2t. Otherwise q,,_;,.; =1, and so ¢, <1 for
i=1,...,(n — Dz, and hence

(n=1x nt

nt
Y g Y oa+ ) ga;

i=1 i=1 i=(n—-1t+1

(n—-1)t+Q@t—-1)=(n+ 1) -1,

It

IA

a contradiction. Let A" be the submatrix obtained from A by omitting its
last ¢ columns. Then A’ has at most (kK — 2)¢ nonzero elements and by the
induction hypothesis, there is a partition of A’ into ¢ X ¢t submatrices of
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which at most (k — 2) have nonzero elements. This partition together with
the two t X ¢ submatrices determined by the last ¢ columns of 4 yields
the desired conclusion. Now suppose that k <n — 1. Then g, = -+ =
g, = 0 and we apply the induction hypothesis to the submatrix 4" com-
prising the last (n — 1)t columns of A. Finally we suppost that k = n.
Let C,,...,C, be the connected components of the bipartite graph
G(U,V; E) corresponding to the matrix A. For i = 1,...,s let (r;, c,)
be the ordered pair consisting of the number of vertices of C; in
U and V, respectively. Then C; has at least r;, + ¢; — 1 edges so that
(ry+c¢; =D+ +(r,+ ¢, — 1) <nt which, since r; + -+ +r, =2t

and ¢; + - -+ +c¢, = nt, implies that s > 2¢. We now interpret the integers
r; and s; modulo ¢. Since s = 2¢, Theorem 3.1 implies that there is a
proper subset J of {1,...,s} such that the sum of (7, c;) over J equals

(et, ft) for some integers e <2 and f < n. If e =0, then there are ft
components each consisting of one vertex in V' (equivalently f¢ columns of
A containing only zeros), and we apply the induction hypothesis to the
submatrix A’ obtained by deleting those zero columns. If e = 2, then
f < n (otherwise J could not be a proper subset of {1,.. ., s}) implying that
there are (n — f)t components each consisting of one vertex in V' (equiv-
alently, (n — f)t columns in A containing only zeros), and we apply the
induction hypothesis to the submatrix A’ obtained by deleting those zero
columns. If e = 1, we get that there are permutation matrices P and Q
such that PAQ is a direct sum of matrices of size ¢ X ft and ¢ X (n — f)t.
Therefore we have at least f + (n — f) = n zero t X ¢t submatrices, and
the proof of the theorem is complete. |

We next show that the conjecture is true for k = 3. First we prove the
following lemma which shows that KM (k,k, k,t) is true for matrices
whose nonzero elements are sufficiently spread out.

LemMma 33. Let A be a kt X kt matrix with kt nonzero elements and
assume that A has at most 2t — 1 zero rows and columns. The A can be
partitioned into k* submatrices of order t of which at most k contain nonzero
elements.

Proof. We prove the lemma by induction on k. If k£ < 2, the lemma
follows from Theorem 2.2. Now assume that k > 3. Let C},...,C_ be the
connected components of the bipartite graph G(U, V; E) corresponding to
the matrix 4. For i = 1,...,s let (r,, ¢,) be the ordered pair consisting of
the number of vertices of C; in U and V, respectively. Then C; has at least
r; + ¢; — 1 edges, and since G(U, V; E) has kt edges, we have

kt > Y. (ri+c¢;— 1) =2kt —s.
i~1
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Thus the number of components satisfies s > kt. Let w; equal the number
of edges of C,, (1 <i <) and let N = {i: w; # 0}. The hypothesis of the
lemma implies that the number of trivial components of G(U,V; E) is at
most 2¢ — 1, and hence |N| > kt — (2t — 1) = ¢t + 1 since k > 3. We now
interpret the integers w, modulo ¢. Since every sequence of ¢ integers
modulo ¢ contains by the pigeon-hole principle a subsequence which sums
to zero modulo ¢, it follows that there is a proper subset J of N such that
Y e w; = et for some positive integer e < k. This implies that there exists
permutation matrices P and Q such that PAQ = A, ® A, where A, is an
et X et matrix with et nonzero clements (corresponding to the edges of
the components C; with i in J) and A4, is a (k — e)t X (k — e)r matrix
with (k — e)t nonzero elements. Since each of the matrices 4, and A4,
can contain at most 2¢ — 1 zero rows and columns, the lemma now follows
by induction. ||

THEOREM 3.4. KM (m,n,3,t) is true for all m, n and t.

Proof. Let A be an mt X nt matrix with 3¢ nonzero elements. There
exists a 3¢ by 3¢ submatrix B of 4 containing all the nonzero elements of
A. If B either has at least ¢ zero rows or at least ¢ zero columns, the
theorem follows from Theorem 3.2. Otherwise B has at most t — 1 zero
rows and at most ¢ — 1 zero columns, and the theorem follows from
Lemma 3.3. |

4. COUNTEREXAMPLES

In this section, we construct for each integer ¢ > 2 a counterexample to
KM(m, n, k, t). Using our identification of matrices with bipartite graphs,
we formulate our constructions as bipartite graphs.

In the next theorem we identify a class of matrices for which the bound
on the number of submatrices of order ¢ containing nonzero elements as
stated in the conjecture is tight. First we prove the following lemma.

LemmMmA 4.1. Let A be a t by nt matrix with kt nonzero entries. Assume
that the associated bipartite graph G(U, V', E) has no cycles. Then for each
partition of A into n submatrices of order t, at least k submatrices contain
nonzero elements.

Proof. Since G(U,V; E) has no cycles, it is a forest with kt edges.
Thus, since |U| = ¢, the number of nonzero columns of A; is at least
(k — Dt + 1. Hence for any partition of 4 into n submatrices of order ¢,
at least k of the submatrices contain nonzero entries. |

THeOREM 4.2. Let A be an mt by nt matrix with kt nonzero entries such
that the number of nonzero entries in each row is congruent to | modulo t for
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T

B
Fic. 1. G(1,3,5).

some integer 1. Assume that the associated bipartite graph G(U,V; E) has
no cycles of length 2t or less. Then for each partition of A into mn
submatrices of order t, at least k submatrices contain nonzero elements.

Proof. Fix any partition of A4 into ¢ X nf submatrices A4,,..., 4,,.
Consider any submatrix A;. Since the nunmber of nonzero entries in each
row of A, is / modulo ¢, the number of nonzero entries of A, is g;¢ for
some integer g;. Since G(U,V; E) has no cycles of length at most 2¢, the
bipartite graph G(U,, V; E,) associated with 4, has no cycles and hence is
a forest with g;¢ edges. Thus by Lemma 4.1, for any partition of A4; into n
submatrices of order ¢, at least g; of the submatrices contain nonzero
entries. It follows that for any partition of A4 into mn t X t submatrices at
least k = g, + - -+ +g,, submatrices contain nonzero entries. |

We remark that the proof of Theorem 4.2 implies that if £ submatrices
of order ¢ contain all nonzero entries of A4, then exactly g, of them are
contained in A4, for each i.

Let G(py,..., p,) denote a graph consisting of a top vertex T and a
bottom vertex B and disjoint paths of lengths p,,..., p, joining T and B,
called the strands of G(p,,...,p,). The graph G(1, 3, 5) is drawn in
Fig. 1. The number of edges of G(p,,...,p,) equals p, + --- +p,, and
the number of vertices is p, + -+ +p, —s + 2. Each of the vertices T
and B has degree equal to s and all other vertices have degree equal to 2.
If all p, are odd, then G(p,, ..., p,) is a bipartite graph G(U, V; E) with
[U] = |V] and without loss of generality we assume that B € U and
TeV,

THeOREM 4.3. Let t be an integer with t > 2. Let s be an integer with
§>3t2—3t+2ands=2(mod t). Let p,,..., p, be distinct odd integers
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such that each p; >t and p, + -+ +p, —s + 2 =0 (mod 2¢). Then the
matrix A associated with the bipartite graph G(p,, ..., p,) is a counterexam-
ple to KM(n,n, k, t) for

p,t o tp,—s+2 p,+ - +pg
n = Y and k=——t———.

Proof. The hypotheses imply that » and &k are integers and that both
the rows and columns of.the adjacency matrix A4 of the bipartite graph
G(py,..., p,) satisfy the assumptions of Theorem 4.2. Thus for each
partition of A into »n? submatrices 4 i (1 <i,j <n)of order ¢, at least &
submatrices contain nonzero elements. Assume to the contrary that there
exists a partition of 4 for which exactly & submatrices contain nonzero
elements. Let U;,...,U, and V, ..., V, be the corresponding partition of
the vertices of U and V, respectively, where B € U, and T € V. For each
i, we speak of the vertices in U, as being matched by the partition.
Similarly, the vertices in each V; are matched by the partition. Since
G(py, ..., p,) is bipartite, the number of edges incident with vertices in U,
iss+ 2t — 1) =s + 2t — 2. It follows from the remark after the proof of
Theorem 4.2 that the number of submatrices A4,; which contain nonzero
elements is x = (s + 2¢ — 2)/t and since s > 3t%> — 3¢ + 2, we have
x = 3t — 1. Without loss of generality we assume that these submatrices
are Ayy,..., Ay Let V"=V, U --- U V,. The number of strands which
contain no vertex of U, different from Bisw>s ~(t —1)=s —¢ + 1.
Let W be the w vertices of these strands which are adjacent to B. Then
WcV and |[V'\ W| =xt —w < 3t — 3. Thus the number of V; with
1 <j <x which have a nonempty intersection with V'\ W is at most
3t — 3. Since x = 3¢ — 1, there exist integers e, and f; with 1 < ¢, < f,
< x such that Ve, UV, S W.

Now consider the nt by ¢ submatrix of 4 determined by the columns in
V;o. Since T & VEO, this submatrix has exactly 2¢ nonzero entries, and it
follows from the remark after the proof of Theorem 4.2 that there are
exactly two nonzero submatrices of order ¢ in the columns Ve Since B is
adjacent to each of the vertices in V( and B is an element of U,, one of
these submatrices is A, . Let the other submatrix be A, e Since the
other ¢ vertices adjacent to VO are not matched to B, they must be
matched together and thus form the set U, . A similar argument shows
that the set of ¢ vertices of V/\ V, which are adjacent to U, are matched
together and thus form a set V2 Continuing like this, we eventually
determine a set U,, such that T is adjacent to U, . Since the strands have
distinct lengths, T i is adjacent to exactly one vertex in U, . Thus the set V,
which contains T also contains the # — 1 other vertices ad]acent to U, not
in Ve, . Repeating this argument beginning with Vi we obtain £ — 1
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vertices on the strands through V; which are also contained in V;. This
implies that |V;| > 2¢ — 1 > ¢, a contradiction. |1

5. MaTrIX PARTITIONING IN HIGHER DIMENSIONS

In this section we consider a generalization of Theorem 1.1 to matrices
of higher dimension.

Let d and n be positive integers. A d-dimensional matrix of order n is an
array

A=la,;, ... (A <iyiy,...,iz<n).

Let ¢+ and k be positive integers. Then we denote by g(d,t, k) the
maximum number M such that every d-dimensional 2¢ X 2¢ X -+ X 2t
matrix with M nonzero elements can be partitioned into 24 ¢ X --- X ¢
submatrices of which at most k& contain nonzero elements. Clearly
g(d,t,1) =t and g(d,t,2%) = (2¢)¢ for all ¢ and d.

The main result of this section is the somewhat surprising fact that the
number of nonzero elements which can always be stuffed into at most two
t Xt X --+ X t submatrices, decreases from 2¢ when d = 2, toonly ¢ + 1
when the dimension d = ¢t + 2.

THEOREM 5.1. For d > 2 and arbitrary t, g(d,t,2) =t + [t/(d — DI.

Proof. As before, we employ a graph-theoretical formulation of our
problem. Let A, ..., A, be pairwise disjoint sets. Denote by
G(A,,...,Ay;; E) a d-uniform hypergraph with vertex set V(G) =
U4 | A, where each edge e of E has the property that le N 4;| =1 for
each i = 1,...,d. We associate with a d-dimensional 2¢ X 2¢ X --- X 2t
matrix A4 = [ajljz"'jd] a d-uniform hypergraph G(A,,..., A, E) where
|4, =2¢ and a; ={vy;,...,vy}, ((=1,2,...,d) as follows: an edge
e = {v; ; 2,---,0;,4 belongs to E if and only if @ ;; ..., = 1. To show
that a matrix A can be partitioned into ¢ X £ X --- X ¢ submatrices of
which at most k contain nonzero elements is equivalent to showing that
each A; can be partitioned into two sets B;, and B, , of cardinality ¢, such
that at most k of the 2¢ subgraphs induced by vertex sets B, ; U B, ;,
U+ UB,,;,1<i;<2,j=1,...,d) contain an edge.

We prove the latter assertion by induction on d. If d =2, we get
g(2,¢t,2) = 2t by Theorem 1.1. Now assume that d > 2. Let p; be the
number of vertices of A, of positive degree. First we prove g(d,,2) <t
+ [t/(d — DI+ 1 by construction a special hypergraph. Let
G(A,,..., Ay; E) with |4, =2z, (i =1,...,d) be a d-uniform hyper-
graph with ¢ + [1/(d — 1)] + 1 edges, where E is defined recursively as



ON A MATRIX PARTITION CONIJECTURE 345

follows. The edge e, is an arbitrary edge. The kth edge is defined so that
e, Ne, =@ fori=1,...,k—2 and le, Ne,_;| =1, where the vertex v
in e, Ne,_, belongs to A; for j the unique integer satisfying 1 <j <d
and j = k (mod d). Clearly, G(A,, ..., A, E) is a connected hypergraph
and it is a matter of routine calculation to show that p, > ¢t fori =1,...,d.
If there were a partition of each A; into B; ; and B, , such that at most
two of the 2¢ induced subgraphs of G contain an edge, then we could
employ a notation such that these two nonempty subgraphs are induced
either by:

() By, UB,, U -+ UB,and B, UB,, U - UB,,, orby

Gi) B,; UB,, U - UB,; and B;; U "+ UB;; UB;j,,V
-+ UBy, for somej > 1.

However, case (i) cannot happen as G is connected, and case (ii) is
excluded as p; > ¢ for all i. '

To prove the reverse inequality g(d, t,2) > ¢t + [t/(d — 1)}, we suppose
that G(A,,..., Ay E) has at most ¢ + [t/(d — 1)] edges. We consider
two cases.

Case (a). There is an i with 1 < i < d such that p; < ¢. Without loss of
generality we assume that p, < ¢ Form a (d — 1)-uniform hypergraph
G(Ay, ..., Ay s E) where ¢ = (u,v,...,w) belongs to E’ provided
there is a vertex z from A4, such that e = (u,v,...,w, z) is an edge of E.
Denote by ¢(G) the number of edges of G. Thus e(G') <e(G) =1t +
[t/(d — D] and by the induction hypothesis there is a partition B’ of each
of the sets A4,,..., A,_, into two parts such that at most two of the
induced subgraphs are nonempty. To get a desired partition B of
Ay, ..., A, it is sufficient to extend B’ by partitioning A, into two sets
B,, and B,,, where both B, and B,, have cardinality ¢ and B, ,
contains all vertices of 4, of nonzero degree.

Case (b). p; >t for all i=1,...,d. Since a connected d-uniform
hypergraph H with e(H) edges has at most e( H)Xd — 1) + 1 vertices of
nonzero degree, our hypergraph G in this case has at least two connected
components (containing at least one edge). Suppose H(C,,...,C; E') is a
connected component of G with |C;| > ¢ for at least one of i = 1,...,d.
Put m = min{|C,|: i = 1,...,d}. Clearly m < ¢, and without loss of gen-
erality we assume that |C;| =m. Then |C{| + -+ +|Cyl 2t +1+
(d — 1)m which in turn implies that H has at least m + [t/(d — D]
edges. Hence, e(G) — e(H) <t — m, which contradicts p, >t as p, <
|Cyl +t—m =t. Therefore, |C,| <t for i=1,...,d and each con-
nected component H of G. We show that there is a partition of the A4,’s
into B; | and B; , such that each edge of G belongs either to a subgraph
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inducedbyB“UB“U "UB,, orinduced by B, ,UB,, U -+~ U
B, ,. If there is a connected component H(C,,...,C,; E') of G with at
least [t /(d — 1)) edges, then (having in mind that ICI <tfori=1,...,d)
we arrive at the required partition by letting B, | be a superset of Ci and
letting B; , contain all the vertices of 4, — C; of nonzero degree (there
are at most ¢ of them as £ — £’ has at most ¢ edges). Finally, we need to
take care of the case when all connected components of G have less than
t +[t/(d — 1)] edges. Then we form a subgraph H of G by taking a
union of connected components H,, ..., H, such that [z 4(d — 1)] < e(H)
=e(H)) + e(H)) + -+ +e(H,) < t. Again, e(H) < ¢ implies |C,| < ¢ for
each i = 1,..., and we can proceed as in the previous case. |
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