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We show how a conjecture of Erd6s which was proved by Olson can be used to 
prove the conjecture when m = 2, thereby obtaining a generalization of the 
theorem of Ganter and Teirlinck. We also prove the conjecture for k = 3. Finally, 
we consider a generalization to matrices of higher dimension. © 1995 Academic 
Press, Inc. 

1. INTRODUCTION 

The  fol lowing t h e o r e m  is p roved  by G a n t e r  and  Te i r l inck  in [4]. 

THEOREM 1.1. Every 2t × 2t matrix with 2t nonzero elements can be 
partitioned into four submatrices o f  order t o f  which at most two contain 
nonzero elements. 

This  t h e o r e m  is bes t  poss ib le  in the  sense  tha t  t he re  exist 2 t  by 2 t  
ma t r i ce s  with 2 t  + 1 nonze ro  e l emen t s  such tha t  in every pa r t i t i on  into 
four  submat r i ces  of  o r d e r  t, at  leas t  t h r e e  con ta in  nonz e ro  e lements .  F o r  
example ,  if  t = 3 the  mat r ix  

-1 1 1 1 0 0 ]  

,1 
1 0 0 0 0 0 

0 1 0 0 0 0 
1 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

canno t  be  p a r t i t i o n e d  into four  
conta in  nonze ro  e lements .  

In  1978, K r a m e r  and  M e s n e r  

submat r i ces  of  o r d e r  3 of  which only two 

con jec tu red  the  fo l lowing} 

Conjecture. Let  m,  n, t and  k be posi t ive integers .  T h e n  every mt × nt 
matr ix  with kt nonze ro  e l emen t s  can be  p a r t i t i o n e d  into mn submat r i ces  
of  o r d e r  t o f  which at most  k conta in  nonze ro  e lements .  

F o r  no t a t i ona l  conven ience  we deno t e  the  asser t ion  of  this con jec tu re  
by K M ( m ,  n, k,  t).  Clear ly,  K M ( m ,  n, k,  1) is t rue.  In  add i t ion ,  
K M ( m , n ,  k , t )  is t rue  if k = 1 or  k > ran, and  it is also t rue  if k = 2 by 
T h e o r e m  1.1. However ,  as can  be  shown by exhaust ive  checking,  the  

1This conjecture was stated in the talk "On the Distribution of Nonzero Elements in 
Certain Sparse Matrices" given by D. M. Mesner at the 9th Southeastern 'Conference held at 
Florida Atlantic University in 1978. 
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parti t ioned matrix 

ojo olo. o lo  o 

11o o l o  o l o  0 

010 0L1 110 0 

o lo  o,3o o l l  o 
Lo o l o  o l o  OlO o 

cannot be reparti t ioned into submatrices of order 2 of which at most six 
contain nonzero elements, and hence KM(4, 4, 6, 2) is false. Although 
KM(m, n, k, t) is not always true, we show that it is true in situations other 
than that given in Theorem 1.1. 

We now introduce a function related to the conjecture. Let  f (m,  n, k, t) 
denote the largest number N such that each mt x nt matrix with N 
nonzero elements can be partitioned into submatrices of order t of which 
at most k contain nonzero elements. Clearly f (m,  n, ran, t) = mnt 2. The 
assertion KM(m, n, k, t) is equivalent to f (m,  n, k, t) > kt. The above 
example shows that f(4,  4, 6, 2) _< 11. 

Problem. Determine f (m,  n, k, t). 

In Section 2, we show that K M ( m , n , k , t )  is true if k = m n - 1  or 
mn - 2, and that KM(2, 2, k, t) is true for all k and t. We also make a 
connection KM(m, n, k, t) and the Zarankiewicz problem, and show that 
the conjecture does not in general give the correct order of magnitude for 
f (m,  n, k, t). In Section 3, we discuss some connections with a conjecture 
of Erd6s proved by Olson, and show that KM(2, n, k, t) is always true. We 
also prove that KM(m, n, 3, t) is always true. In Section 4, we discuss a 
family of counterexamples to the conjecture. In Section 5, we consider a 
generalization of Theorem 1.1 to matrices of higher dimension. 

Throughout  we view our matrix A as an adjacency matrix of a bipartite 
graph G(U, V; E) where U is the set of vertices corresponding to the rows 
of A, V is the set of vertices corresponding to the columns of A, and E is 
the set of edges determined by the nonzero elements in A. In this context 
the conjecture can be formulated in t e r m s  of graph homomorphisms. 
Recall that a graph G' is a homomorphic image of a graph G provided G'  
can be obtained from G by a sequence of identifications of nonadjacent 
vertices. Suppose that ]U] = m t  and I VI = nt. Then f (m,  n, k, t) is the 
largest number N such that every bipartite graph G(U, V; E) with IEI --- N 
has a homomorphic image G'(U', V'; E') where each vertex of U' is 
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o b t a i n e d  by ident i fy ing t ver t ices  of  U, each  ver tex  of  V' is o b t a i n e d  by 
ident i fy ing  t ver t ices  of  V and IE'I _< k. 

2. K M ( m ,  n, k, t )  FOR k < 2 AND FOR k LARGE 

W e  first p rove  the  fol lowing l emma.  

LEMMA 2.1. Let  c, M,  N and t be positive integers with c < M. Assume 

that ql, q2 . . . .  , qMt is a nondecreasing sequence o f  nonnegative integers with 
EiM=t lq i  < ( M N  - c)t. Then E ct ~ _ - i=lqi < c t ( N  - 1). 

Proof. Suppose  to the  con t ra ry  tha t  ~2C21qi > 1 + c t ( N -  1). T h e n  
qa > N,  implying tha t  qi -> N for all i with ct < i < Mt.  H e n c e  

Mt ct Mt 

E qi = E qi + E qi 
i=1  i=1  i=ct+l 

> 1 + c t ( N -  1) + ( M t - c t ) N =  1 + ( M N - c ) t ,  

con t rad ic t ing  our  assumpt ion .  | 

The  fol lowing t h e o r e m  shows tha t  K M ( m ,  n, k,  t )  is t rue  if k is e i the r  
very smal l  or  very large.  

THEOREM 2.2. I f  k < 2 or k > m n -  2, then K M ( m ,  n, k,  t) is true. 

Proof. Let  A be  an mt  by nt matr ix  with kt  nonz e ro  e lements .  I f  
k = 1, t hen  the  nonze ro  e l emen t s  of  A are  con t a ined  in a submat r ix  of  
o r d e r  t. If  k = 2, the  nonze ro  e l emen t s  o f  A are  con t a ined  in a submat r ix  
of  o r d e r  2 t  to which we can then  apply  T h e o r e m  1.1. I f  k > mn,  the  
conclus ion  holds  trivially. 

Le t  qi be the  n u m b e r  of  nonze ro  e l emen t s  in row i of  A and r e a r r a n g e  

rows so tha t  ql < q2 <- " ' "  ~ qMt" I f  k = m n -  1, then  we apply  
L e m m a  2.1 wi th  M = m, N = n and  c = 1 and  ob ta in  a t × nt submat r ix  
wi th  at  most  (n  - 1)t nonze ro  e l emen t s  and  hence  a t x t submat r ix  of  
zeros.  Now assume tha t  k = mn - 2. A p p l y i n g  L e m m a  2.1 with M = m, 
N = n and  c = 2 we ob ta in  a 2 t  x nt submat r ix  A '  with at  most  2 t (n  - 1) 
= (2n - 2)t nonze ro  e lements .  Le t  q~ be  the  n u m b e r  o f  nonze ro  ele-  
men t s  in co lumn j of  A '  and  r e a r r a n g e  co lumns  so tha t  q'~ < q~ < • • • < 
q '  A p p l y i n g  L e m m a  2.1 to this s equence  with M = n, N = 2, and  c = 2, / I t ' "  

we ob ta in  a 2 t  x 2 t  submat r ix  of  A '  with at most  2 t  nonz e ro  e lements .  
A p p l i c a t i o n  of  T h e o r e m  1.1 comple t e s  the  proof .  II 

I f  m = n = 2, t hen  T h e o r e m  2.2 gives the  following. 
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COROLLARY 2.3. KM(2, 2, k, t) is true for all k and t. 

We now show that  Corol lary 2.3 is best  possible for each k = 1, 2 and 3 
in the sense that  the conclusion need  not  hold if the number  of  nonzero  
e lements  is kt + 1. Let  A be a 2 t × 2 t  matrix. If  A contains t + 1 
nonzero  entries, then A can be par t i t ioned into four submatrices of  order  
t of  which only one contains nonzero  elements  if and only if ei ther  no row 
contains more  than one nonzero  e lement  or no column contains more  
than non  nonzero  element .  There  are many combinatorial ly different 
matr ices A with 2 t  + 1 nonzero  elements  that  cannot  be par t i t ioned into 
four  submatr ices  of  order  t of  which only two contain nonzero  elements.  
For  example, if the 2t  + 1 nonzero  elements  of  A occupy at least t + 1 
rows and at least t + 1 columns, and the bipart i te  graph  of  A has a 
connec ted  componen t  which contains ei ther  t + 1 vertices corresponding 
to rows or t + 1 vertices cor responding  to columns, 2 then at least three 
submatrices of  order  t are required to contain all the nonzero  elements.  

In  contrast  to the above two cases, we now show that  there  is a unique 
matrix A (up to permuta t ions  of  rows and columns) such that  A is a 
2t  × 2 t  matrix with 3t + 1 nonzero  elements  which cannot  be  par t i t ioned 
into four  t × t matr ices of  which at most  three contain nonzero  elements.  
Our  discussion is in terms of  a bipart i te  graph G(U, V; E) with 3t + 1 
edges which does not  contain an empty subgraph H(U', V'; E '  = 0 )  where  
t U'l = [V'L = t, U' c U and V' c V. This is equivalent to the condit ion 
that  for each subset W of cardinality t of  U we have IN(W)] > t, where 
N(W) is the set of  all neighbors  of  vertices of  W. We claim that  G is 
isomorphic  to a disjoint un ion  of  a cycle C 2 t + 2  of length 2 t  + 2 and a 
matching of  size t - 1. Let  U = {u 1 . . . . .  uzt}. Af te r  relabeling we can 
assume that  deg(u i )_<deg (u i+  1) for l < i < 2 t -  1. Now deg(u 1 ) +  
• " + deg(u t) > t, since otherwise IN(u 1 . . . .  , ut)] _< t. Thus  deg(u t) > 2 

which implies deg(uzt)  < 2 and hence  0 < deg(u i) < 2 for all i. Suppose 
U has x > 1 vertices of  degree  0. Then  we have t - 1 - 2x  vertices of  
degree  1 and t + 1 + x vertices of  degree  2. We have tN(W)t < [VI = 2t  
for all subsets W of U and hence  for W equal to the subset consisting of  
all vertices of  U of  degree  2. As there  are t + 1 + x such vertices, two of  
them, say u and v, have a c o m m o n  neighbor,  i.e., IN(u, v)l < 3. Let  U i be 
the set of  vertices of  degree  i, (i = 0, 1) and let U z be a set of  x + 1 
vertices of  degree  2 such that  u and v are in U 2. Let  W = U 0 u UI U U 2. 
Then  IN(W)[  _< IN(U0)] + IN(U1)] + IN(U2) I < x . 0  + ( t -  1 -  2 x ) .  
1 + (2x + 1) _< t, a contradict ion as I W] = t. Thus  all vertices in U (and 
in V) are of  degree  1 or 2. So, G consists of  cycles and paths. If  there were  

2For instance, the bipartite graph of .4 is, except for isolated vertices, a tree of order 
2t + 2 with t + 1 vertices corresponding to rows and t + 1 vertices corresponding to 
columns. 
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a cycle of length at most t, then the vertices of the cycle in U together with 
a suitable number  of vertices of  U of degree 1 would form a set W with 
IWI = t and [N(W)J < t, a contradiction. Suppose that G has a path  of 
length at least two. Then there is a path  P = uvw • • • z of length at least 
two with the initial vertex u from U. I f  deg(w) = 2, we take W = U 1 u {w} 
where U 1 is the set of all vertices of U of degree l and obtain a 
contradiction, since lull  = t - 1 and tN(W)I _< t. If  deg(w) = 1, then P 
is of length 2 and we obtain a contradiction by choosing as the t-th vertex 
of W an arbitrary vertex of degree 2, since in this case IN(U1)[ < t - 2. 
Our conclusion now follows by noting that if G(U, V; E )  is isomorphic to 
the union of a cycle of length 2t + 2 and a matching of size t - 1, then 
IN(W)] > t is valid for any subset W of cardinality t of U. 

Corollary 2.3 and the above discussion imply that f(2,  2, k, t) = kt  for 
1 < k < 3. This fact might suggest that whenever KM(m,  n, k, t)  is true, 
then it is best possible in the sense that the number  kt  is the largest 
number  of nonzero entries for which the conclusion holds. We show that 
this is not the case. In addition we prove that KM(m,  n, k, t)  is true for 
k = m n - p  where p is small in comparison to mn.  We obtain these 
results by making a connection with the famous Zarankiewicz problem. 

To make the relation between K M ( m , . n ,  k,  t) and the Zarankiewicz 
problem transparent,  we state the latter in the following form: Let  

1 < c < a and 1 < d < b. Determine Z (a ,  b; c, d), the smallest number N 

such that each a × b matrix with N zeros contains a c X d zero submatrix. 3 

We clearly have 

f (m ,  n, m n  - rs, t )  

>_ ( m t ) ( n t )  - Z ( m t ,  nt;  rt, s t )  with equality if r = s = 1. (1) 

A result of  Culik [2] (see also Exercise 13, p. 361, in [1]) asserts that 

Z ( a , b ; c , d )  = ( d -  1)a + ( c -  1) + 1, i r a  > ( c -  1) d " 

A result of Re iman  {71 (see also part  (i) of Thm. 2.6, p. 312, in [1]) asserts 
that 

a + g/a 2 + 4(c  - 1 ) a b ( b  - 1) 
+ 1 ;  

2 
Z ( a , b ; c , 2 )  < 

in particular, 

a + a 4v~a- 3 
Z ( a , a ; 2 , 2 )  < 2 + 1. 

3Usually the Zarankiewicz problem is formulated with the zeros and nonzeros inter- 

changed. 
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Applying these results we obtain the following. 

THEOREM 2.4. We have 

(i) f ( m ,  n, mn  - p,  t)  >_ tmn for  mt  > (p t  - 1)(~') and n > 2, and 

(ii) f ( m ,  n, mn  - p,  2) >_ 2ran for  p < n / 4  and n <_ m. 

In particular, f ( n ,  n, n 2 - 1, 2) >_ 4n 2 - o(n2). 

Thus  KM (m, n, k, t) is t rue for the values given in the theorem,  but  it 
is not  best  possible. Indeed,  T h e o r e m  2.4 shows that  for the case m = n, t 
= 2, and k = n z - 1, KM(m,  n, k, t) does not  provide the correct  order  
of  magni tude  for f ( m ,  n, k,  t). 

Corollary 2.3 and (1) with m = n = 2 and r = s = 1 imply that  Z(2 t ,  2t ;  
t , t ) = 4 t  2 - 3 t .  

3. K M ( m , n , k , t )  F o R m  = 2 AND FOR k = 3 

The  following theorem was conjectured by Erd6s  [3] and proved by 
Olson [6] (see also [5]). 

THEOREM 3.1. I f  ~ l , ' ' ' , a a t - ~  is a sequence (repetitions allowed) o f  
elements in the elementary Abelian group Z t × Zt,  then some subsequence 
has sum (0, 0). 

Olson 's  t heo rem is a key ingredient  in the proof  of  the following 
general izat ion of  T h e o r e m  1.1. 

THEOREM 3.2. KM (2, n, k,  t)  is true for  all n, k, and t. 

Proof. We prove the theorem by induct ion on n. If  n = 1, the theorem 
clearly holds. Now assume that  n > 1. Let  A be a 2t  × nt matrix with kt 
nonzero  elements.  Let  qi be the number  of  nonzero  elements  in the 
column i of  A (i = 1 , . . . , n t ) ,  where  we may assume ql -< " "  < %t. 
First suppose that  k >_ n + 1. Then  ~27tlqi = kt > (n + 1)t implies that  
q ( n - 1 ) t + l  -'}- " ' "  +q~t > 2t. Otherwise q(n-l)z+l = 1, and so qi N 1 for 
i = 1 . . . . .  (n -- 1)t, and hence  

nt ( n = l ) t  nt 

E qi = E qi -t- E qi 
i -  1 i -  1 i = ( n -  l ) t +  1 

< ( n -  1)t  + ( 2 t -  1) = ( n  + 1 ) t -  1, 

a contradict ion.  Let  A'  be the submatrix obta ined  f rom A by omitt ing its 
last t columns. Then  A'  has at most  (k - 2)t nonzero  elements  and by the 
induct ion hypothesis,  there  is a part i t ion of  A '  into t X t submatriees of  
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which at most  (k - 2) have nonzero  elements.  This part i t ion together  with 
the two t × t submatrices de te rmined  by the last t columns of  A yields 
the desired conclusion. Now suppose that  k _< n - 1. Then  ql . . . . .  

qt = 0 and we apply the induct ion hypothesis to the submatrix A '  com- 
prising the last (n - 1)t columns of  A. Finally we suppost  that  k = n. 
Let  C l . . . . .  C s be the connec ted  components  of  the bipart i te  graph  
G(U, V; E )  cor responding  to the matrix A.  For  i = 1 . . . .  , s let (ri, c i) 
be the o rde red  pair  consisting of  the number  of  vertices of  C/ in 
U and V, respectively. Then  C i has at least r / +  c i -  1 edges so that  
(r  I + c I - 1) + . - .  + ( r  s + c s - 1) < nt which, since r 1 + " . -  + q  = 2t  
and c 1 + • • • + G  = nt, implies that  s _> 2t. We now interpret  the integers 
r i and s i modulo  t. Since s > 2t,  T h e o r e m  3.1 implies that  there is a 
proper subset J of  { 1 , . . . ,  s} such that  the sum of (rj, cj) over J equals 
(et, f i )  for some integers e < 2 and f < n. If  e = 0, then there  are f i  
componen t s  each consisting of  one  vertex in V (equivalently f i  columns of  
A containing only zeros), and we apply the induct ion hypothesis to the 
submatrix A'  obta ined  by delet ing those zero columns. If  e = 2, then 
f < n (otherwise J could not be a p roper  subset of  { 1 , . . . ,  s}) implying that  
there  are (n  - f ) t  componen t s  each consisting of  one vertex in V (equiv- 
alently, (n  - f ) t  columns in A containing only zeros), and we apply the 
induct ion hypothesis  to the submatrix A'  obta ined by deleting those zero 
columns. I f  e = 1, we get that  there  are permuta t ion  matrices P and Q 
such that  P A Q  is a direct sum of  matr ices of  size t × f i  and t × (n - f ) t .  
Therefore  we have at least f + (n - f )  = n zero t × t submatrices,  and 
the p roof  of  the theorem is complete.  | 

We next show that  the conjecture  is t rue for k = 3. First we prove the 
following lemma which shows that  K M  (k, k, k, t) is t rue for matr ices 
whose nonze ro  elements  are sufficiently spread out. 

LEMMA 3.3. Let  A be a kt  × kt matrix with kt  nonzero elements and 
assume that A has at most  2 t  - 1 zero rows and columns. The et can be 
partitioned into k 2 submatrices o f  order t o f  which at most  k contain nonzero 
elements. 

Proof. We prove the l emma by induct ion on k. I f  k < 2, the l emma 
follows f rom T h e o r e m  2.2. Now assume that  k ___ 3. Let  C 1 , . . . ,  Cs be the 
connec ted  componen t s  of  the bipart i te graph  G(U, V; E )  corresponding  to 
the matrix A.  For  i = 1, . . . ,  s let (ri, c i) be the o rdered  pair  consisting of  
the number  of  vertices of  C~ in U and V, respectively. Then  C i has at least 
r i + c i - 1 edges, and since G(U,  V; E )  has kt edges, we have 

kt >_ ~ ( r i + C i - -  1)  ~--" 2k t  - s. 
i - I  
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Thus the number of components satisfies s >_ kt.  Let W i equal the number 
of edges of Cg, (1 _< i < s) and let N = {i: Wg ~ 0}. The hypothesis of the 
lemma implies that the number of trivial components of G(U,  V; E )  is at 
most 2t - 1, and hence IN] > kt  - (2t - 1) _> t + 1 since k >_ 3. We now 
interpret the integers w; modulo t. Since every sequence of t integers 
modulo t contains by the pigeon-hole principle a subsequence which sums 
to zero modulo t, it follows that there is a proper subset J of N such that 
Eg ~ awg = et for some positive integer e < k. This implies that there exists 
permutation matrices P and Q such that P A Q  = A 1 • A 2 where A 1 is an 
et × et matrix with et nonzero elements (corresponding to the edges of 
the components C i with i in J )  and A 2 is a ( k  - e) t  × ( k  - e) t  matrix 
with ( k  - e) t  nonzero elements. Since each of the matrices A~ and A 2 

can contain at most 2t - 1 zero rows and columns, the lemma now follows 
by induction. II 

THEOREM 3.4. K M  ( m ,  n, 3, t)  is true f o r  all m,  n and t. 

Proof. Let A be an m t ×  nt  matrix with 3t nonzero elements. There 
exists a 3t by 3t submatrix B of A containing all the nonzero elements of 
A. If B either has at least t zero rows or at least t zero columns, the 
theorem follows from Theorem 3.2. Otherwise B has at most t - 1 zero 
rows and at most t -  1 zero columns, and the theorem follows from 
Lemma 3.3. | 

4 .  COUNTEREXAMPLES 

In this section, we construct for each integer t > 2 a counterexample to 
KM(m, n, k, t). Using our identification of matrices with bipartite graphs, 
we formulate our constructions as bipartite graphs. 

In the next theorem we identify a class of matrices for which the bound 
on the number of submatrices of order t containing nonzero elements as 
stated in the conjecture is tight. First we prove the following lemma. 

LEMMA 4.1. Le t  A be a t by nt  matrix  with k t  nonzero entries. A s s u m e  
that the associated bipartite graph G(U,  V; E )  has no cycles. Then fo r  each 
parti t ion o f  A into n submatrices o f  order t, at least k submatrices contain 
nonzero elements. 

Proof. Since G(U, V; E )  has no cycles, it is a forest with kt  edges. 
Thus, since I UI = t, the number of nonzero columns of Ag is at least 
(k - 1)t + 1. Hence for any partition of A into n submatrices of order t, 
at least k of the submatrices contain nonzero entries. | 

THEOaEM 4.2. Let  A be an m t  by nt  matrix  with k t  nonzero entries such 
that the number  o f  nonzero entries in each row is congruent to l modulo t f o r  
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some integer l. Assume that the associated bipartite graph G(U, V; E)  has 
no cycles of  length 2t or less. Then for each partition o f  A into mn 
submatrices of  order t, at least k submatrices contain nonzero elements. 

Proof Fix any parti t ion of A into t × nt submatrices A 1 . . . .  , Am.  

Consider any submatrix A i. Since the number  of nonzero entries in each 
row of A i is l modulo t, the number  of nonzero entries of Ai is qi t for 
some integer q~. Since G(U, V; E)  has no cycles of length at most 2t, the 
biparti te graph G(U~, V; E~) associated with A i has no cycles and hence is 
a forest with q~t edges. Thus by Lemma 4.1, for any partition of A i into n 
submatrices of order t, at least qi of the submatrices contain nonzero 
entries. It  follows that for any partition of A into m n t  x t submatrices at 
least k = ql + " ' "  q - q m  submatrices contain nonzero entries. | 

We remark that the proof  of Theorem 4.2 implies that if k submatrices 
of order t contain all nonzero entries of A, then exactly qi of them are 
contained in A i for each i. 

Let G ( p l , . . . ,  Ps) denote a graph consisting of a top vertex T and a 
bot tom vertex B and disjoint paths of lengths Pl  . . . . .  Ps joining T and B, 
called the strands of G ( p l , . . . , p s ) .  The graph G(1, 3, 5) is drawn in 
Fig. 1. The number  of edges of G ( p l , . . . , p s )  equals Pl + "'" +Ps, and 
the number  of vertices is Pl + " ' "  +Ps - s + 2. Each of the vertices T 
and B has degree equal to s and all other vertices have degree equal to 2. 
If  all Pi are odd, then G ( p l , . . . ,  Ps) is a biparti te graph G(U, V ; E )  with 
I Ur = f VI and without loss of  generality we assume that B ~ U and 
T ~  V, 

Tr~EOREM 4.3. Let t be an integer with t > 2. Let s be an integer with 
s > 3t 2 - 3t + 2 ands  - 2 (rood t). L e t p ~ , . . . , p  s bedistinct odd integers 
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such that each Pi >- t and pl  + --" +Ps - s + 2 = 0 (mod 2t).  Then the 
matrix A associated with the bipartite graph G ( p l , .  . . ,  p~) is a counterexam- 
ple to K M ( n ,  n, k ,  t)  for  

P~ + "'" + P s - S  + 2 Pl + "'" +Ps 
n = and k = 

2t  t 

Proof. The  hypotheses  imply that  n and k are integers and that  both 
the rows and columns of~the adjacency matrix A of  the biparti te graph  
G ( P l , . . . , P s )  satisfy the assumptions of  T h e o r e m  4.2. Thus  for each 
part i t ion of  A into n 2 submatrices A;~ (1 < i, j < n)  of  order  t, at least k 
submatrices contain nonzero  elements.  Assume to the contrary that  there  
exists a part i t ion of  A for which exactly k submatrices contain nonzero  
elements.  Let  U 1 . . . . .  U n and V 1 . . . .  , Vn be the cor responding  part i t ion of  
the vertices of  U and V, respectively, where  B ~ U 1 and T ~ V 1. For  each 
i, we speak of  the vertices in U~ as being matched by the partition. 
Similarly, the vertices in each V i are matched  by the partition. Since 
G ( p l  . . . .  , Ps) is bipartite, the number  of  edges incident with vertices in UI 
is s + 2 0  - 1) = s + 2 t  - 2. It follows f rom the remark  after the p roof  of  
T h e o r e m  4.2 that  the number  of  submatrices A1~ which contain nonzero  
elements  is x = ( s + 2 t - 2 ) / t  and since s > _ 3 t  2 - 3 t  + 2, we have 
x _> 3t - 1. Wi thout  loss of  generali ty we assume that  these submatrices 
are A l l  . . . .  , Alx.  Let  V'  = V 1 U . . .  U V x. The number  of  strands which 
contain no vertex of  U 1 different f rom B is w > s - (t - 1) = s - t + 1. 
Let  W be the w vertices of  these strands which are adjacent to B. Then  
W c _ V '  and I V ' \ W I  = x t - w  < 3 t - 3 .  Thus  the number  of  Vj with 
1 _< j < x which have a nonempty  intersection with V ' \  W is at most  
3t - 3. Since x > 3t - 1, there  exist integers e 0 and f0 with 1 < e 0 < )Co 
_< x such that  Veo U Vfo c_ W. 

Now consider  the nt by t submatrix of  A de te rmined  by the columns in 
Ve0. Since T ~ Veo, this submatrix has exactly 2t  nonzero  entries, and it 
follows f rom the remark  after the p roof  of  T h e o r e m  4.2 that  there  are 
exactly two nonzero  submatrices of  order  t in the columns Ve, ,. Since B is 
adjacent  to each of  the vertices in Ve~ ~ and B is an e lement  of  U D o n e  of 
these submatrices is A~e o. Let  the o ther  submatrix be Ae~e0. Since the 
o ther  t vertices adjacent  to Veo are not  matched  to B, they must  be 
matched  together  and thus form the set Ue. A similar a rgument  shows 
that  the set o f  t vertices of  V \  Ve0 which are adjacent  to  gel are matched  
together  and thus form a set Ve2. Cont inuing like this, we eventually 
de te rmine  a set Uei such that  T is adjacent  to Uei. Since the strands have 
distinct lengths, T is adjacent  to exactly one vertex in Uel. Thus  the set V 1 
which contains T also contains the t - 1 o ther  vertices adjacent to Uei not  
in Vei_. Repea t ing  this a rgument  beginning with Vf0, we obtain t - 1 
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ver t ices  on the s t rands  t h rough  ~0 which are  also con ta ined  in V 1. This  
impl ies  tha t  I Vll __ 2t  - 1 > t, a cont rad ic t ion .  I 

5. MATRIX PARTITIONING IN HIGHER DIMENSIONS 

In  this sec t ion  we cons ide r  a gene ra l i za t ion  of  T h e o r e m  1.1 to ma t r i ces  
of  h igher  d imens ion .  

Le t  d and n be  posi t ive  in tegers .  A d-dimens ional  matr ix  o f  order n is an 
a r ray  

A ~- [ a i , i 2 . . . i d  ] (1 < i l , i  2 . . . . .  i d < n ) .  

Let  t and  k be  posi t ive  in tegers .  Then  we d e n o t e  by g ( d , t , k )  the  
m a x i m u m  n u m b e r  M such tha t  every d -d imens iona l  2 t  × 2 t  × " -  x 2 t  
mat r ix  with M nonze ro  e l emen t s  can be  p a r t i t i o n e d  into  2 d t x . . -  x t 
submat r i ces  of  which at most  k con ta in  nonz e ro  e lements .  Clear ly  
g ( d ,  t, 1) = t and  g ( d ,  t, 2 d) = (2 t )  d for  all t and  d. 

T h e  ma in  resul t  of  this sec t ion is the  somewha t  surpr i s ing  fact  tha t  the  
n u m b e r  of  nonze ro  e l emen t s  which  can always be  s tuffed into at most  two 
t x t x . • • X t submatr ices ,  dec reases  f rom 2 t  when  d = 2, to only t + 1 
when  the d imens ion  d > t + 2. 

THEOREM 5.1. For  d > 2 and  arbitrary t, g ( d ,  t, 2) -- t + [ t / ( d  - 1)]. 

Proof. As before ,  we employ  a g r a p h - t h e o r e t i c a l  fo rmula t ion  of  our  
p r o b l e m .  Le t  A 1 , . . . ,  A d be  pa i rwise  d is jo int  sets. D e n o t e  by 
G ( A 1 , . . . , A d ;  E )  a d -un i fo rm h y p e r g r a p h  with ver tex  set  V ( G ) =  
udl a i where  each  edge  e of  E has the  p r o p e r t y  tha t  le ( 3 A i [  = 1 for 
each  i = 1 . . . . .  d. W e  assoc ia te  wi th  a d -d imens iona l  2 t  × 2 t  × • • • x 2 t  
ma t r ix  A = [ajg2...id] a d -un i fo rm h y p e r g r a p h  G ( A I , . . . ,  Ad ;  E )  where  
IAil = 2t  and  a i = {vt, i . . . . .  v2t,i}, (i  = 1 ,2  . . . .  , d )  as follows: an edge  
e = {vk,lvJ2,2,.. . ,  rid, a} be longs  to E if and  only if a ],J2 ' J, = 1. To show 
tha t  a mat r ix  A can  be  p a r t i t i o n e d  into t x t x . . .  × t submat r i ces  of  
which at  most  k con ta in  nonze ro  e l emen t s  is equ iva len t  to showing tha t  
each  A i can be  p a r t i t i o n e d  into two s e t s  B i ,  1 and  Bs, 2 of  ca rd ina l i ty  t, such 
tha t  at most  k of  the  2 d subgraphs  i nduced  by ver tex  sets Bl, s~ u B2,s2 
U • • • U B d ,  id , (1 < ij < 2, j = 1 , . . . ,  d )  con ta in  an edge.  

W e  prove  the  l a t t e r  asser t ion  by induc t ion  on d. I f  d = 2, we ge t  
g(2,  t , 2 )  = 2 t  by T h e o r e m  1.1. Now assume tha t  d > 2. Le t  Pi be  the  
n u m b e r  of  ver t ices  of  A s o f  posi t ive  degree .  F i rs t  we prove  g ( d ,  t, 2) < t 
+ [ t / ( d  - 1)] + 1 by  c o n s t r u c t i o n  a spe c i a l  h y p e r g r a p h .  L e t  
G ( A  1 . . . . .  Aa;  E )  with Mil = 2t ,  (i = 1 . . . . .  d )  be a d -un i fo rm hyper -  
g raph  with t + [ t / ( d  - 1)] + 1 edges,  whe re  E is de f ined  recurs ively  as 
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follows. The  edge ea is an arbitrary edge. The  k t h  edge is defined so that  
e k n e i = ~ for i = 1 . . . .  , k - 2, and le k n ek_al = 1, where  the vertex v 
in e k N e k_ 1 belongs to Aj  for j the unique integer satisfying 1 < j _< d 
and j - k (mod d). Clearly, G ( A  1 . . . .  , Aa; E )  is a connec ted  hypergraph  
and it is a mat te r  of  rout ine  calculation to show that  p~ > t for i = 1 . . . . .  d. 
I f  there  were  a part i t ion of  each A i into B~,~ and Bi, 2 such that  at most  
two of  the 2 a induced subgraphs of  G contain an edge, then we could 
employ a nota t ion such that  these two nonempty  subgraphs are induced 

ei ther by: 

(i) B1, 1 t.-) B2,1 U " ' "  t o B d ,  1 and B1, 2 U B 2 ,  2 to " ' "  UBd, 2, o r b y  

(ii) B1,1 tO B2,1 tO " ' "  tO Bd, 1 a n d  B1, l tO " ' "  to Bj, 1 tO B j + I ,  2 tO 

" ' "  tO Bd, 2 for  some j > 1. 

However ,  case (i) cannot  happen  as G is connected,  and case (ii) is 
excluded as Pi > t for all i. 

To  prove the reverse inequality g(d,  t, 2) > t + [ t / ( d  - 1)], we suppose 
that  G ( A 1 , . . . ,  Ad; E )  has at most  t + [ t / ( d  - 1 ) ]  edges. We  consider 
two cases. 

Case (a). There  is an i with 1 < i < d such that  Pi < t. Wi thout  loss of  
generali ty we assume that  Pl  -< t. F o r m  a ( d -  D-uni form hypergraph 
G ' ( A 1 , . . .  , Ad_ l ;  E ' )  where  e' = (u, v . . . .  ,w)  belongs to E '  provided 
there  is a vertex z f rom A a such that  e = (u, z , . . . ,  w, z )  is an edge of  E.  
D e n o t e  by e (G)  the number  of  edges of  G. Thus  e(G')  < e(G)  = t + 
[ t / ( d  - 1)] and by the induct ion hypothesis  there  is a part i t ion B '  of  each 
of  the sets A 1 , . . . ,  A a _  1 into two parts  such that  at most  two of  the 
induced subgraphs  are nonempty.  To get a desired part i t ion B of  
A 1 , . . . ,  A d it is sufficient to extend B'  by part i t ioning A d into two sets 
Bda and Bd,2, where  both  Bd, 1 and Bd, 2 have cardinality t and Bd, ~ 

contains all vertices of  A d of  nonzero  degree.  

Case (b). Pi > t for all i =  1 , . . . ,  d. Since a connec ted  d-uni form 
bypergraph  H with e ( H )  edges has at most  e ( H ) ( d  - 1) + 1 vertices of  
nonze ro  degree,  our  hypergraph  G in this case has at least two connec ted  
componen t s  (containing at least one edge). Suppose H ( C  1 . . . .  , Ca; E ' )  is a 
connec ted  componen t  of  G with I Cil > t for at least one  of  i = I . . . .  , d. 
Put  m = min{ICil:  i = 1 . . . . .  d}. Clearly m < t, and without  loss of  gen- 
erality we assume that  I C 11 = m .  Then  [C 11 + " "  + l C d l  >-t + 1 + 
( d -  1)m which in turn implies that  H has at least m + [ t / ( d -  1)] 
edges. Hence ,  e (G)  - e ( H )  < t - m,  which contradicts  Pt  > t as Pl  < 
I CI[ + t - m = t .  Therefore ,  [Cil < t  for i =  1 , . . . , d  and each con- 
nected  c o m p o n e n t  H of  G. We show that  there  is a part i t ion of  the Ai's 
into Bi,1 and Bi.2 such that  each edge of  G belongs ei ther  to a subgraph 

582a/69/2-12 
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i n d u c e d  by B1,1 i j B2 ' 1 i j . . .  I,_) Bd, 1 or  i n d u c e d  by B1,2 U B2,2 I-3 " ' "  U 
Bd, 2. I f  t h e r e  is a c o n n e c t e d  c o m p o n e n t  H ( C 1 ,  . . . ,  Cd; E ' )  of  G w i t h  at  

l eas t  [ t / ( d  - 1)] edges ,  t h e n  (hav ing  in m i n d  t h a t  [C i] < t fo r  i = 1 . . . . .  d )  

we  a r r ive  at  t h e  r e q u i r e d  p a r t i t i o n  by l e t t i ng  Bi, 1 be  a s u p e r s e t  o f  C i a n d  

l e t t i ng  Bi, 2 c o n t a i n  all t h e  v e r t i c e s  o f  A i - C i o f  n o n z e r o  d e g r e e  ( t h e r e  

a r e  at  m o s t  t o f  t h e m  as E - E '  has  at m o s t  t edges) .  F ina l ly ,  we  n e e d  to  

t a k e  c a r e  o f  t h e  case  w h e n  all c o n n e c t e d  c o m p o n e n t s  o f  G h a v e  less  t h a n  

t + [ t / ( d  - 1)] edges .  T h e n  we  f o r m  a s u b g r a p h  H o f  G by t a k i n g  a 

u n i o n  o f  c o n n e c t e d  c o m p o n e n t s  H 1 . . . .  , H~ such  tha t  [ t / ( d  - 1)] < e ( H )  

= e ( H 1 )  + e ( H  2) + " ' "  + e ( H  s) < t. A g a i n ,  e ( H )  < t imp l i e s  ]Ci] < t fo r  
e a c h  i = 1, . . . ,  t a n d  we  can  p r o c e e d  as in t h e  p r e v i o u s  case.  | 
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