906 research outputs found
Recommended from our members
Radiochemical Solar Neutrino Experiments - Successful and Otherwise.
Over the years, several different radiochemical systems have been proposed as solar neutrino detectors. Of these, two achieved operating status and obtained important results that helped to define the current field of neutrino physics: the first solar-neutrino experiment, the Chlorine Detector ({sup 37}Cl) that was developed by chemist Raymond Davis and colleagues at the Homestake Mine, and the subsequent Gallium ({sup 71}Ga) Detectors that were operated by (a) the SAGE collaboration at the Baksan Laboratory and (b) the GALLEX/GNO collaborations at the Gran Sasso National Laboratory. These experiments have been extensively discussed in the literature and in many previous International Neutrino Conferences. In this paper, I present important updates to the results from SAGE and GALLEX/GNO. I also review the principles of the radiochemical detectors and briefly describe several different detectors that have been proposed. In light of the well-known successes that have been subsequently obtained by real-time neutrino detectors such as Kamiokande, Super-Kamiokande, SNO, and KamLAND, I do not anticipate that any new radiochemical neutrino detectors will be built. At present, only SAGE is still operating; the Chlorine and GNO radiochemical detectors have been decommissioned and dismantled
Recommended from our members
Acrylic vessel cleaning tests
The acrylic vessel as constructed is dirty. The dirt includes blue tape, Al tape, grease pencil, gemak, the glue or residue form these tapes, finger prints and dust of an unknown composition but probably mostly acrylic dust. This dirt has to be removed and once removed, the vessel has to be kept clean or at least to be easily cleanable at some future stage when access becomes much more difficult. The authors report on the results of a series of tests designed: (a) to prepare typical dirty samples of acrylic; (b) to remove dirt stuck to the acrylic surface; and (c) to measure the optical quality and Th concentration after cleaning. Specifications of the vessel call for very low levels of Th which could come from tape residues, the grease pencil, or other sources of dirt. This report does not address the concerns of how to keep the vessel clean after an initial cleaning and during the removal of the scaffolding. Alconox is recommended as the cleaner of choice. This acrylic vessel will be used in the Sudbury Neutrino Observatory
Neutral Plasma Oscillations at Zero Temperature
We use cold plasma theory to calculate the response of an ultracold neutral
plasma to an applied rf field. The free oscillation of the system has a
continuous spectrum and an associated damped quasimode. We show that this
quasimode dominates the driven response. We use this model to simulate plasma
oscillations in an expanding ultracold neutral plasma, providing insights into
the assumptions used to interpret experimental data [Phys. Rev. Lett. 85, 318
(2000)].Comment: 4.3 pages, including 3 figure
High sensitivity measurement of 224Ra and 226Ra in water with an improved hydrous titanium oxide technique at the Sudbury Neutrino Observatory
The existing hydrous titanium oxide (HTiO) technique for the measurement of
224Ra and 226Ra in the water at the Sudbury Neutrino Observatory (SNO) has been
changed to make it faster and less sensitive to trace impurities in the HTiO
eluate. Using HTiO-loaded filters followed by cation exchange adsorption and
HTiO co-precipitation, Ra isotopes from 200-450 tonnes of heavy water can be
extracted and concentrated into a single sample of a few millilitres with a
total chemical efficiency of 50%. Combined with beta-alpha coincidence
counting, this method is capable of measuring 2.0x10^3 uBq/kg of 224Ra and
3.7x10^3 uBq/kg of 226Ra from the 232Th and 238U decay chains, respectively,
for a 275 tonne D2O assay, which are equivalent to 5x10^16 g Th/g and 3x10^16 g
U/g in heavy water.Comment: 8 Pages, 2 figures and 2 table
Fast Diffusion Process in Quenched hcp Dilute Solid He-He Mixture
The study of phase structure of dilute He - He solid mixture of
different quality is performed by spin echo NMR technique. The diffusion
coefficient is determined for each coexistent phase. Two diffusion processes
are observed in rapidly quenched (non-equilibrium) hcp samples: the first
process has a diffusion coefficient corresponding to hcp phase, the second one
has huge diffusion coefficient corresponding to liquid phase. That is evidence
of liquid-like inclusions formation during fast crystal growing. It is
established that these inclusions disappear in equilibrium crystals after
careful annealing.Comment: 7 pages, 3 figures, QFS200
Topological self-similarity on the random binary-tree model
Asymptotic analysis on some statistical properties of the random binary-tree
model is developed. We quantify a hierarchical structure of branching patterns
based on the Horton-Strahler analysis. We introduce a transformation of a
binary tree, and derive a recursive equation about branch orders. As an
application of the analysis, topological self-similarity and its generalization
is proved in an asymptotic sense. Also, some important examples are presented
A probabilistic model for gene content evolution with duplication, loss, and horizontal transfer
We introduce a Markov model for the evolution of a gene family along a
phylogeny. The model includes parameters for the rates of horizontal gene
transfer, gene duplication, and gene loss, in addition to branch lengths in the
phylogeny. The likelihood for the changes in the size of a gene family across
different organisms can be calculated in O(N+hM^2) time and O(N+M^2) space,
where N is the number of organisms, is the height of the phylogeny, and M
is the sum of family sizes. We apply the model to the evolution of gene content
in Preoteobacteria using the gene families in the COG (Clusters of Orthologous
Groups) database
A radium assay technique using hydrous titanium oxide adsorbent for the Sudbury Neutrino Observatory
As photodisintegration of deuterons mimics the disintegration of deuterons by
neutrinos, the accurate measurement of the radioactivity from thorium and
uranium decay chains in the heavy water in the Sudbury Neutrino Observatory
(SNO) is essential for the determination of the total solar neutrino flux. A
radium assay technique of the required sensitivity is described that uses
hydrous titanium oxide adsorbent on a filtration membrane together with a
beta-alpha delayed coincidence counting system. For a 200 tonne assay the
detection limit for 232Th is a concentration of 3 x 10^(-16) g Th/g water and
for 238U of 3 x 10^(-16) g U/g water. Results of assays of both the heavy and
light water carried out during the first two years of data collection of SNO
are presented.Comment: 12 pages, 4 figure
- …