907 research outputs found

    Molecular diversity amongst Radopholus similis populations from Sri Lanka detected by RAPD analysis

    Get PDF
    La réaction de polymérase en chaîne (RAPD) a été utilisée pour comparer l'ADN de quatorze populations de #Radopholus similis provenant de différentes plantes hôtes et de régions variées du Sri Lanka, ainsi que l'ADN d'une nouvelle espèce de #Radopholus originaire de l'est de Java. Quatre populations isolées d'aréquier, théier, bananier et citrus semblent très différentes d'après leur profil de RAPD. L'analyse hiérarchisée des groupes des données obtenus d'après les profils de RAPD a permis un essai de regroupement des quinze populations en trois groupes et a montré l'éloignement de trois isolats demeurant jusqu'à maintenant monotypiques. Les résultats sont examinés dans le contexte de l'existence de biotypes de #R. similis$ et de leur divergence génétique au Sri Lanka. (Résumé d'auteur

    Super AutoDipole

    Full text link
    The publicly available package for an automated dipole subtraction, AutoDipole, is extended to include the SUSY dipoles in the MSSM. All fields in the SM and the MSSM are available. The code is checked against the analytical expressions for a simple process. The extended package makes it possible to compute the QCD NLO corrections to SUSY multi-parton processes like the stop pair production plus jets at the LHC.Comment: 16 pages, 1 figure, v2: a few typos to match the published version in Eur. Phys. J.

    Lepton Flavor Violation in Z and Lepton Decays in Supersymmetric Models

    Get PDF
    The observation of charged lepton flavor non-conservation would be a clear signature of physics beyond the Standard Model. In particular, supersymmetric (SUSY) models introduce mixings in the sneutrino and the charged slepton sectors which could imply flavor-changing processes at rates accessible to upcoming experiments. In this paper we analyze the possibility to observe Z --> lep_I lep_J in the GigaZ option of TESLA at DESY. We show that although models with SUSY masses above the current limits could predict a branching ratio BR(Z --> mu e) accessible to the experiment, they would imply an unobserved rate of mu --> e gamma and thus are excluded. In models with a small mixing angle between the first and the third (or the second and the third) slepton families GigaZ could observe Z --> tau mu (or Z --> tau e) consistently with present bounds on lep_J --> lep_I gamma. In contrast, if the mixing angles between the three slepton families are large the bounds from mu --> e gamma push these processes below the reach of GigaZ. We show that in this case the masses of the three slepton families must be strongly degenerated (with mass differences of order 10^{-3}). We update the limits on the slepton mass insertions delta_{LL,RR,LR} and discuss the correlation between flavor changing and g_mu-2 in SUSY models.Comment: 23 pages, 6 figures. Version to appear in Phys. Rev.

    Semiparametric theory and empirical processes in causal inference

    Full text link
    In this paper we review important aspects of semiparametric theory and empirical processes that arise in causal inference problems. We begin with a brief introduction to the general problem of causal inference, and go on to discuss estimation and inference for causal effects under semiparametric models, which allow parts of the data-generating process to be unrestricted if they are not of particular interest (i.e., nuisance functions). These models are very useful in causal problems because the outcome process is often complex and difficult to model, and there may only be information available about the treatment process (at best). Semiparametric theory gives a framework for benchmarking efficiency and constructing estimators in such settings. In the second part of the paper we discuss empirical process theory, which provides powerful tools for understanding the asymptotic behavior of semiparametric estimators that depend on flexible nonparametric estimators of nuisance functions. These tools are crucial for incorporating machine learning and other modern methods into causal inference analyses. We conclude by examining related extensions and future directions for work in semiparametric causal inference

    PYTHIA 6.4 Physics and Manual

    Full text link
    The PYTHIA program can be used to generate high-energy-physics `events', i.e. sets of outgoing particles produced in the interactions between two incoming particles. The objective is to provide as accurate as possible a representation of event properties in a wide range of reactions, within and beyond the Standard Model, with emphasis on those where strong interactions play a role, directly or indirectly, and therefore multihadronic final states are produced. The physics is then not understood well enough to give an exact description; instead the program has to be based on a combination of analytical results and various QCD-based models. This physics input is summarized here, for areas such as hard subprocesses, initial- and final-state parton showers, underlying events and beam remnants, fragmentation and decays, and much more. Furthermore, extensive information is provided on all program elements: subroutines and functions, switches and parameters, and particle and process data. This should allow the user to tailor the generation task to the topics of interest.Comment: 576 pages, no figures, uses JHEP3.cls. The code and further information may be found on the PYTHIA web page: http://www.thep.lu.se/~torbjorn/Pythia.html Changes in version 2: Mistakenly deleted section heading for "Physics Processes" reinserted, affecting section numbering. Minor updates to take into account referee comments and new colour reconnection option

    Automated one-loop calculations: a proof of concept

    Full text link
    An algorithm, based on the OPP reduction method, to automatically compute any one-loop amplitude, for all momentum, color and helicity configurations of the external particles, is presented. It has been implemented using the tree-order matrix element code HELAC and the OPP reduction code CutTools. As a demonstration of the potential of the current implementation, results for all sub-processes included in the 2007 Les Houches wish list for LHC, are presented.Comment: 22 pages, published versio

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure

    The PHENIX Experiment at RHIC

    Full text link
    The physics emphases of the PHENIX collaboration and the design and current status of the PHENIX detector are discussed. The plan of the collaboration for making the most effective use of the available luminosity in the first years of RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program available at http://www.rhic.bnl.gov/phenix

    Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV

    Full text link
    We report the results of a study of color coherence effects in ppbar collisions based on data collected by the D0 detector during the 1994-1995 run of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8 TeV. Initial-to-final state color interference effects are studied by examining particle distribution patterns in events with a W boson and at least one jet. The data are compared to Monte Carlo simulations with different color coherence implementations and to an analytic modified-leading-logarithm perturbative calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters
    corecore