6,255 research outputs found

    Hydrogen Enriched Natural Gas as a Clean Motor Fuel (CONTINUATION OF 7863 ABANDONED)

    Get PDF
    A fuel mixture is disclosed. In a preferred embodiment, an alternative gaseous fuel for operating a combustion engine includes approximately 21 to 50% Hydrogen and the rest natural gas constituants such as combinations of Methane, Carbon Dioxide, Nitrogen, Ethane, Propane, Iso-Butane, N-Butane, Iso Pentane, N-Pentane, and Hexanes Plus. Current production engines without any substantial modifications can take this alternative fuel. This alternative fuel is lean burning and emits emissions that are below current legal standards

    Hydrogen Enriched Natural Gas as a Motor Fuel with variable Air Fuel Ratio and Fuel Mixture Ratio Control (CIP OF 7863 ABANDONED)

    Get PDF
    A hydrogen and natural gas fuel mixture for internal combustion engines is provided for vehicle engines such as those used in standard production engines for automobiles, trains and lawn mowers. The gaseous fuel for operating a vehicle combustion engines includes approximately 21 to 50% Hydrogen and the rest natural gas constituents such as combinations of Methane, Carbon Dioxide, Nitrogen, Ethane, Propane, Iso-Butane, N-Butane, Iso Pentane, N-Pentane, and Hexanes Plus. A fuel mixture of approximately 28 to 36 percent Hydrogen and a air fuel equivalence ratio of approximately 0.625 is an extreme lean burn condition that yields hydrocarbon emission levels of less than approximately 104 ppm (0.84 hm/hp hr.). Current internal combustion engines that are in mass production can take this alternative fuel without any substantial modifications to their systems. This alternative fuel is lean burning and emits emissions that are below current legal standards. The novel fuel mixture can be use

    Hydrogen Enriched Natural Gas as a Motor Fuel with Variable Air Fuel Ratio and Fuel Mixture Ratio Control (DIV OF 6637 and CIP OF 7863)

    Get PDF
    A hydrogen and natural gas fuel mixture for internal combustion engines is provided for vehicle engines such as those used in standard production engines for automobiles, trains and lawn mowers. The gaseous fuel for operating a vehicle combustion engines includes approximately 21 to 50% Hydrogen and the rest natural gas constituents such as combinations of Methane, Carbon Dioxide, Nitrogen, Ethane, Propane, Iso-Butane, N-Butane, Iso Pentane, N-Pentane, and Hexanes Plus. A fuel mixture of approximately 28 to 36 percent Hydrogen and a air fuel equivalence ratio of approximately 0.625 is an extreme lean burn condition that yields hydrocarbon emission levels of less than approximately 104 ppm (0.84 hm/hp hr.). Current internal combustion engines that are in mass production can take this alternative fuel without any substantial modifications to their systems. This alternative fuel is lean burning and emits emissions that are below current legal standards. The novel fuel mixture can be use

    A probabilistic analysis of argument cogency

    Get PDF
    This paper offers a probabilistic treatment of the conditions for argument cogency as endorsed in informal logic: acceptability, relevance, and sufficiency. Treating a natural language argument as a reason-claim-complex, our analysis identifies content features of defeasible argument on which the RSA conditions depend, namely: change in the commitment to the reason, the reasonā€™s sensitivity and selectivity to the claim, oneā€™s prior commitment to the claim, and the contextually determined thresholds of acceptability for reasons and for claims. Results contrast with, and may indeed serve to correct, the informal understanding and applications of the RSA criteria concerning their conceptual dependence, their function as update-thresholds, and their status as obligatory rather than permissive norms, but also show how these formal and informal normative approachs can in fact align

    Efficient CSL Model Checking Using Stratification

    Get PDF
    For continuous-time Markov chains, the model-checking problem with respect to continuous-time stochastic logic (CSL) has been introduced and shown to be decidable by Aziz, Sanwal, Singhal and Brayton in 1996. Their proof can be turned into an approximation algorithm with worse than exponential complexity. In 2000, Baier, Haverkort, Hermanns and Katoen presented an efficient polynomial-time approximation algorithm for the sublogic in which only binary until is allowed. In this paper, we propose such an efficient polynomial-time approximation algorithm for full CSL. The key to our method is the notion of stratified CTMCs with respect to the CSL property to be checked. On a stratified CTMC, the probability to satisfy a CSL path formula can be approximated by a transient analysis in polynomial time (using uniformization). We present a measure-preserving, linear-time and -space transformation of any CTMC into an equivalent, stratified one. This makes the present work the centerpiece of a broadly applicable full CSL model checker. Recently, the decision algorithm by Aziz et al. was shown to work only for stratified CTMCs. As an additional contribution, our measure-preserving transformation can be used to ensure the decidability for general CTMCs.Comment: 18 pages, preprint for LMCS. An extended abstract appeared in ICALP 201

    Biomarker Testing to Estimate Under-Reported Heavy Alcohol Consumption by Persons with HIV Initiating ART in Uganda

    Get PDF
    Alcohol affects the transmission and treatment of HIV, yet may be under-reported in resource-limited settings. We compared self-reported alcohol consumption with levels of plasma carbohydrate-deficient transferrin (%CDT), a biomarker of heavy alcohol consumption, in persons initiating antiretroviral therapy in Uganda. Almost seven percent (6.7%) of persons reporting abstaining and 10% reporting consuming 1ā€“40 drinks in the prior month tested positive for %CDT, and actual under-report may be higher due to low sensitivity of %CDT. These results suggest likely under-report in those reporting abstaining and current drinking. Improved identification of heavy alcohol consumption is needed for research and clinical purposes

    The X10 Flare on 2003 October 29: Triggered by Magnetic Reconnection between Counter-Helical Fluxes?

    Get PDF
    Vector magnetograms taken at Huairou Solar Observing Station (HSOS) and Mees Solar Observatory (MSO) reveal that the super active region (AR) NOAA 10486 was a complex region containing current helicity flux of opposite signs. The main positive sunspots were dominated by negative helicity fields, while positive helicity patches persisted both inside and around the main positive sunspots. Based on a comparison of two days of deduced current helicity density, pronounced changes were noticed which were associated with the occurrence of an X10 flare that peaked at 20:49 UT, 2003 October 29. The average current helicity density (negative) of the main sunspots decreased significantly by about 50. Accordingly, the helicity densities of counter-helical patches (positive) were also found to decay by the same proportion or more. In addition, two hard X-ray (HXR) `footpoints' were observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI} during the flare in the 50-100 keV energy range. The cores of these two HXR footpoints were adjacent to the positions of two patches with positive current helicity which disappeared after the flare. This strongly suggested that the X10 flare on 2003 Oct. 29 resulted from reconnection between magnetic flux tubes having opposite current helicity. Finally, the global decrease of current helicity in AR 10486 by ~50% can be understood as the helicity launched away by the halo coronal mass ejection (CME) associated with the X10 flare.Comment: Solar Physics, 2007, in pres
    • ā€¦
    corecore