STARS

University of Central Florida STARS

UCF Patents

Technology Transfer

8-4-1998

Hydrogen Enriched Natural Gas as a Motor Fuel with Variable Air Fuel Ratio and Fuel Mixture Ratio Control (DIV OF 6637 and CIP OF 7863)

R. K. Collier University of Central Florida

Douglas Hahn University of Central Florida

Robert Hoekstra University of Central Florida

David Mulligan University of Central Florida

Find similar works at: https://stars.library.ucf.edu/patents University of Central Florida Libraries http://library.ucf.edu

This Patent is brought to you for free and open access by the Technology Transfer at STARS. It has been accepted for inclusion in UCF Patents by an authorized administrator of STARS. For more information, please contact STARS@ucf.edu.

Recommended Citation

Collier, R. K.; Hahn, Douglas; Hoekstra, Robert; and Mulligan, David, "Hydrogen Enriched Natural Gas as a Motor Fuel with Variable Air Fuel Ratio and Fuel Mixture Ratio Control (DIV OF 6637 and CIP OF 7863)" (1998). *UCF Patents*. 254.

https://stars.library.ucf.edu/patents/254

United States Patent [19]

Collier, Jr. et al.

[54] HYDROGEN ENRICHED NATURAL GAS AS A MOTOR FUEL WITH VARIABLE AIR FUEL RATIO AND FUEL MIXTURE RATIO CONTROL

- [75] Inventors: Robert Kirk Collier, Jr., Merritt Island; Robert Louis Hoekstra, Oviedo; David Neal Mulligan, Titusville; Douglas Edward Hahn, Melbourne, all of Fla.
- [73] Assignee: University of Central Florida, Orlando, Fla.
- [21] Appl. No.: 771,647
- [22] Filed: Dec. 21, 1996

Related U.S. Application Data

- [60] Division of Ser. No. 428,626, Apr. 25, 1995, Pat. No. 5,666,923, and a continuation-in-part of Ser. No. 237,900, May 4, 1994.
- [51] Int. Cl.⁶ F02M 67/06
- [52] U.S. Cl. 123/492; 123/436; 123/443; 123/527; 123/DIG. 12
- [58] Field of Search 123/527, 436, 123/683, 675, 443, 492

[56] References Cited

U.S. PATENT DOCUMENTS

4,284,053	8/1981	Merrick	123/492
4,520,763	6/1985	Lynch et al	123/1 A
4,873,961	10/1989	Tanaka	123/492
4,908,765	3/1990	Murakami et al	123/492
5,139,002	8/1992	Lynch et al 123/	DIG. 12
5,483,939	1/1996	Kamura et al.	123/492

US005787864A

[11] Patent Number: 5,787,864

[45] Date of Patent: Aug. 4, 1998

Primary Examiner-Erick R. Solis

Attorney, Agent, or Firm-Brian S. Steinberger; Law Offices of Brian S. Steinberger

[57] ABSTRACT

A hydrogen and natural gas fuel mixture for internal combustion engines is provided for vehicle engines such as those used in standard production engines for automobiles, trains and lawn mowers. The gaseous fuel for operating a vehicle combustion engines includes approximately 21 to 50% Hydrogen and the rest natural gas constituents such as combinations of Methane, Carbon Dioxide, Nitrogen, Ethane, Propane, Iso-Butane, N-Butane, Iso Pentane, N-Pentane, and Hexanes Plus. A fuel mixture of approximately 28 to 36 percent Hydrogen and a air fuel equivalence ratio of approximately 0.625 is an extreme lean burn condition that yields hydrocarbon emission levels of less than approximately 104 ppm(0.84 hm/hp hr.). Current internal combustion engines that are in mass production can take this alternative fuel without any substantial modifications to their systems. This alternative fuel is lean burning and emits emissions that are below current legal standards. The novel fuel mixture can be used in internal combustion engines for automobiles, lawnmowers, and trains. A control system for allowing the internal combustion engines to operate at extreme lean burn conditions is also provided for use with both a carburetor and fuel injection system. For a carburetor system, a secondary demand regulator system can kick in when a throttle is wide open and will allow additional fuel to pass through the system to meet instantaneous power demands such that occur when full throttle depression is insufficient for severe grade climbing, expressway merging, passing and the like. The fuel injection system can also be programed with a control algorithm that will select air fuel ratios. The computer control can increase fuel with respect to air when the throttle reaches a selected point of travel. The computer control can also dynamically change the hydrogen and natural gas fuel mixture ratio dynamically while the vehicle is being operated based on engine power demands and emissions.

9 Claims, 23 Drawing Sheets

g/HpHr

Sheet 5 of 23

g/HpHr

5,787,864

(udd) XON

Fig. 11

JHqH\₽

g/HpHr

лндн/б

5,787,864

Fig. 21a

HYDROGEN ENRICHED NATURAL GAS AS A MOTOR FUEL WITH VARIABLE AIR FUEL RATIO AND FUEL MIXTURE RATIO CONTROL

This is a Divisional of Application Ser. No. 08/428,626 filed Apr. 25, 1995, now U.S. Pat. No. 5,666,923.

This invention is a Continuation-In-Part to U.S. Application Ser. No. 08/237.900 entitled Hydrogen Enriched Natural Gas as a Clean Motor Fuel filed on May 4, 1994. 10

This invention relates to mobile vehicle fuels, and in particular to a hydrogen and natural gas mixture used as a fuel for combustion engines and a lean burn throttle control algorithm to optimize a vehicle emissions and power. This invention was funded in part under contract no. DCA 15 92SE20061505026 from the Florida Energy Office.

BACKGROUND AND PRIOR ART

Due to the world's depleting reserves of fossil fuels such as oil, there exists a need for alternative fuel vehicles (AFV's). The Energy Policy Act (EPACT) signed by President Bush in 1992 requires that states and the federal government take steps to reduce energy use and to shift to other sources of energy, including the addition of alternative fuel vehicles(AFV's) to federal and state fleets. Individual states such as California and New York have instituted goals of near-zero emission standards for percentages of new vehicles sold within those states in the near future. Thus, the need exists for alternative fuels.

30 Natural gas has long been considered an excellent alternative fuel since it is considered much cleaner than other fossil fuels such as oil, and its reserves are much larger than crude oil. Natural gas which is primarily composed of methane and combinations of Carbon Dioxide, Nitrogen, 35 Ethane, Propane, Iso-Butane, N-Butane, Iso Pentane, N-Pentane, and Hexanes Plus, is a renewable energy source since anaerobic bacterial eventually will convert all plants into methane type gas. Natural gas has an extremely high octane number, approximately 130, thus allowing higher 40 For example, U.S. Pat. No. 4.376,097 to Emelock describes compression ratios and broad flammability limits.

A problem with using natural gas is reduced power output when compared to gasoline, due mostly to the loss in volumetric efficiency with gaseous fuels, as well as the lack of the infrastructure for fueling natural gas vehicles. Another 45 problem area is the emissions produced by these natural gas vehicles. Although, the emissions are potentially less than that of gasoline vehicles, these vehicles generally require some types of emissions controls such as exhaust gas recirculation(EGR), positive crankcase ventilation(PCV), 50 and/or unique three-way catalyst. A still another problem with using natural gas vehicles is the slow flame speed which requires that the fuel be ignited substantially before top dead center (BTDC). In general, most internal combustion engines running on gasoline operate with a spark 55 1993 SAE Future Transportation Conference, SAE Paper advance of approximately 35 degrees BTDC where as the same engine operating on natural gas will require an approximate advance of 50 degrees BTDC. The slower burn rate of the fuel results in reduced thermal efficiency and poor burn characteristics.

Proposed alternative fuels utilizing hydrogen and fossil fuels have also been used with resulting problems. In an article entitled Houseman et al., "A Two-Charge Engine Concept: Hydrogen Enrichment" SAE Paper #741169 (1974), research was conducted at the Jet Propulsion Labo- 65 ratory. The researchers ran a V-8 internal combustion engine on a mixture of gasoline and hydrogen. The addition of

hydrogen allowed the engine to be operated much leaner than was possible on gasoline alone. The result of this research was that NO_x emissions were reduced below the 1977 EPA standard of 0.4 gm per mile. The article states that "At an equivalence ratio of 0.53, very low NO_x and CO were produced and engine thermal efficiency was substantially increased over stock gasoline configurations. The article mentions that in order to "operate a vehicle on fuel mixtures of gasoline and hydrogen, an onboard source of hydrogen is required. Onboard storage of hydrogen, either as a compressed gas, as a liquid at cryogenic temperature, or as a hydride is not a practical solution today. Direct generation of hydrogen from gasoline in an onboard reactor was selected as the best solution to the problem." The main problem with this device was that the reactor described has not been adopted due to the complexity of the device.

The articles by MacDonald, J. S., entitled "Evaluation of the Hydrogen Supplemented Fuel Concept with an Experimental Multicylinder Engine" Automotive Engineering Congress and Exposition, SAE Paper #760101 (1976), and by Parks, F. B., entitled "A Single-Cylinder Engine Study of Hydrogen-Rich Fuels" Automotive Engineering Congress and Exposition, SAE Paper #760099 (1976) were by authors from General Motors that also investigated the use of 25 hydrogen-enriched gasoline. Reflecting on Houseman et al.'s work, MacDonald states that, "while this approach (hydrogen reactor) as been shown to be feasible, it does have its limitations. A problem is the maximum theoretical yield of hydrogen per pound of fuel is about 14% by weight. Another problem is the hydrogen generator is at best only 80% efficient, so that any gasoline going to the generator represents an efficiency loss, which is a loss in fuel economy. For these reasons it is desirable to keep the quantity of hydrogen required for acceptable engine operation to a minimum. This article goes on to report that when 14.4% of the fuel mass was hydrogen the engine operated satisfactorily with an equivalence ratio of 0.52 and the NO_x levels had dropped below the EPA mandated level of 0.4 gm per mile.

Several U.S. patents have incorporated similar concepts. a hydrogen generator for motor vehicles. U.S. Pat. No. 4,508,064 to Watanabe describes a customized engine for burning hydrogen gas. U.S. Pat. No. 5,176,809 to Simuni describes a technique of producing and recycling hydrogen from exhaust gases.

Some research has been conducted for combining hydrogen and natural gas as a fuel mixture. Articles by Nagalingam et al. entitled: "Performance Study Using Natural Gas, Hydrogen-Supplemented Natural Gas and Hydrogen in AVL Research Engine". International Journal of Hydrogen Energy, Vol 8, No. 9, pp. 715-720, 1983; Fulton et al. entitled: "Hydrogen for Reducing Emissions from Alternative Fuel Vehicles" 1993 SAE Future Transportation Conference, SAE Paper from Alternative Fuel Vehicles" #931813, (1993) and an article by Yusuf entitled: "In Cylinder Flame Front Growth Rate Measurement of Methane and Hydrogen Enriched Methane Fuel in a Spark Ignited Internal Combustion Engine, Unpublished Masters Theseis, 60 University of Miami (1990) each disclosed such combinations of a fuel mixture. However, the mixtures were generally limited to 20% hydrogen and the rest generally methane.

U.S. Pat. No. 5,139,002 to Lynch et al., states that hydrogen enriched mixtures should only contain mixtures of up to levels of between "10 and 20%." See column 9, lines 49-60, and column 16, lines 14-21. At column 9, lines 37-60, Lynch et al. states that "Relatively few tests were necessary to rule out the 25% and 30% mixtures(of hydrogen)..."

Despite its clean burning characteristics, the utilization of hydrogen has had many problems as an alternative fuel. Primarily, the use of hydrogen in vehicles has been limited ⁵ by the size, weight, complexity and cost of hydrogen storage options as well as the cost of hydrogen.

The controlling of air/fuel ratios and engine power has been limited in past applications. Generally, a spark ignition (SI) engine's power is controlled through a process called ¹⁰ throttling. Throttling controls the volume of air that enters a combustion engine. The throttle system is formed from one or more throttle blades which are placed in the air inlet stream. During a "closed throttle" position also referred to as IDLE, the throttle blade closes off the air inlet and the only ¹⁵ air entering the engine is leakage passing through the blades. Alternatively, the only air entering the engine can be air passing through a small hole in the throttle blade to provide a minimum amount of air to the engine. When the throttle is wide open, the throttle blade is parallel to the air stream and 20it presents a minimal air restriction to the incoming air. Most often the throttle blade is between full open and fully closed thus presenting a controlled restriction to the air passage.

Fuel in a spark ignition(SI) engine is generally introduced into the inlet air stream to provide the air fuel mixture for combustion. Various methods have been used for introducing the fuel into the air. For example, the carbureted SI engine is the most common method for automotive applications. Here, the carburetor controls the amount of fuel injected into the air stream by the fuel orifice size and the pressure drop across a venturi. To increase the amount of fuel to be injected given a constant pressure drop, the size of the jet was increased. With a fixed jet size, the amount of fuel entering the air stream remained virtually proportional to the pressure drop across the ventur. Thus, the pressure drop across the ventur was a function of throttle position.

An alternative known method of introducing fuel into the air stream is a fuel injector. The fuel injector can be located in a common plenum which feeds all of the cylinders on a multicylinder engine. At this location, the engine is said to be "throttle body injected." The injectors can alternatively be located in the intake runners feeding the individual runners. This type of injection is referred to as "port injection."

In both the throttle body and the port injection systems a sensor is needed to measure the amount of air entering the engine in order to control the injectors and produce a constant air/fuel ratio over the full range of throttle openings. Generally the output signal from a pressure sensor or $_{50}$ a flow sensor is fed to a computer which uses the analog of the air flow from the sensor to control the length of time the injector is to be open and thus control the air/fuel ratio. Additional sensors have also been included to measure throttle position and exhaust oxygen content. Output from $_{55}$ these sensors also can control the air/fuel ratio.

Power output of an engine has also been controlled strictly by the amount of fuel introduced into the combustion chamber just prior to ignition. In compression ignition(CI) engines also referred to as "Diesel Engines", the CI engine 60 does not usually have a throttle. Air entering the engine is only restricted by the intake manifold design. Fuel is injected directly into the cylinder of the CI engine just prior to ignition. The ignition is caused by the high heat generated during the compression stroke. 65

Examples of the above prior art can be found in U.S. Pat. Nos.: 3.982.878 to Yamane et al.; 4.184.461 to Leung; 4.213.435 to Simko; 4.244.023 to Johnson; 4.406.261 to Ikeura 4.471.738 to Smojver; 4.512.304 to Snyder; and 4.730.590 to Sogawa.

Operating an engine at lean burn was attempted by U.S. Pat. No. 4,499,872 to Ward et al. However, the Ward system is restricted to an adiabatic engine design and requires elaborate structural components and connections such as a microwave generator in order to operate.

SUMMARY OF THE INVENTION

The first objective of the present invention is to provide a hydrogen and natural gas mixture that can extend the lean combustion limits of natural gas as a motor fuel.

The second object of this invention is to provide a hydrogen and natural gas mixture that substantially reduces the harmful exhaust emissions produced by conventional combustion engines.

The third object of this invention is to provide a hydrogen and natural gas mixture that can be used in existing gaseous vehicles without major modification and additions to those vehicles.

The fourth object of this invention is to provide a hydrogen and natural gas mixture that can meet long term federal ²⁵ and state emission requirements.

The fifth object of this invention is to provide a hydrogen and natural gas fuel mixture that optimizes the cost of the fuel against exhaust emissions.

The sixth object of this invention is to provide a hydrogen and natural gas fuel mixture that contains approximately 21 to 50% hydrogen and the rest natural gas such as methane.

The seventh object of this invention is to provide a computer controlled method of controlling the variable 35 air/fuel ratio of a standard internal combustion engine in order to achieve lean burn.

The eighth object of this invention is to provide a throttle control to achieve lean burn in a standard internal combustion engine.

The ninth object of the invention is to provide a control to maintain the air fuel ratio to optimize power, efficiency and emissions as defined by the California Air Resources Board for an Ultra Low Emissions Vehicle and for a near Zero Emissions Vehicle from a closed blade throttle to a fully open blade throttle position.

The tenth object of this invention is to provide a system to increase the fuel to air ratio (ϕ) as a function of power demand after the engine throttle is fully open.

The eleventh object of this invention is to provide a method of determining the amount of fuel to air enrichment using a multi-criteria decision analysis algorithm optimized to minimize emissions while creating sufficient power to meet demand.

The twelfth object of this invention is to provide a method a method for adjusting the hydrogen and methane fuel mixture ratio based on engine power demands and emissions.

A preferred embodiment of the invention is to provide a hydrogen and natural gas fuel mixture where the percent of hydrogen is approximately twenty-one up to fifty percent of the mixture. The natural gas portion of the fuel can include constituents such as combinations of Methane, Carbon Dioxide, Nitrogen, Ethane, Propane, Iso-Butane, N-Butane, Iso Pentane, N-Pentane, and Hexanes Plus. Current internal combustion engines that are in mass production can take this alternative fuel without any substantial modifications to their

15

35

60

systems. This alternative fuel is lean burning and emits emissions that are below current legal standards. Specific mixture ratios of utilizing the mixture ratios are disclosed for an internal combustion engine for a vehicle.

A computer algorithm is disclosed that determines the 5 amount of fuel to air enrichment necessary to meet sufficient power demands of an internal combustion engine's throttle while minimizing emissions. The power demand is determined by a computer algorithm whose input is the throttle position sensor. The position, the velocity and the acceleration of the throttle pedal after the throttle blades are fully open will be measured and computed to determine minimum fuel enrichment. In addition to fuel enrichment the spark timing will be varied to optimize power enhancement while minimizing emissions. The system can be operated in an open loop configuration utilizing lookup tables that depend upon engine configuration. Various engine configurations included for the lookup tables can include but are not limited to cylinder size(4,6.8,10,12), cylinder displacement and head dimensions. Alternatively the system can be operated 20 tures in parts per million(PPM) vs. Equivalence Ratio. using exhaust gas emission monitoring on board the vehicle using sensors such as NO_x, CO, CO₂, O₂, THC (Total hydrocarbon), NMOG(Nonmethane organic compounds). The system can use in-cylinder pressure transducers to measure engine power output as a feedback device to close ²⁵ the control loop with the throttle position sensor and algorithm or the system can be operated in the open loop configuration. In addition the in-cylinder pressure transducer can be utilized to measure cylinder misfire and modify the air fuel ratio in each cylinder of the engine further optimiz- 30 ing emission and power output. The fuel mixture of hydrogen and natural gas can be adjusted dynamically to the engine based on engine demand and emissions.

Further objects and advantages of this invention will be apparent from the following detailed description of a presently preferred embodiment which is illustrated schematically in the accompanying drawings.

BRIEF DESCRIPTION OF THE FIGS.

FIG. 1 shows a graph of exhaust emissions for natural gas and 0% hydrogen mixtures in parts per million(PPM) vs. Equivalence Ratio.

FIG. 2 shows an enlarged sectional graph of FIG. 1 of exhaust emissions for natural gas and 0% hydrogen mixtures 45 in parts per million(PPM) vs. Equivalence Ratio.

FIG. 3 shows a graph of exhaust emissions for natural gas and 0% hydrogen mixtures in grams per horse power hour(g/HpHr) vs. Equivalence ratio.

FIG. 4 shows an enlarged sectional graph of FIG. 3 of 50 exhaust emissions for natural gas and 0% hydrogen mixtures in grams per horse power hour(g/HpHr) vs. Equivalence ratio.

FIG. 5 shows a graph of exhaust emissions for natural gas 55 and 11% hydrogen mixtures in parts per million(PPM) vs. Equivalence Ratio.

FIG. 6 shows an enlarged sectional graph of FIG. 5 of exhaust emissions for natural gas and 11% hydrogen mixtures in parts per million(PPM) vs. Equivalence Ratio.

FIG. 7 shows a graph of exhaust emissions for natural gas and 10% hydrogen mixtures in grams per horse power hour(g/HpHr) vs. Equivalence ratio.

FIG. 8 shows an enlarged sectional graph of FIG. 7 of exhaust emissions for natural gas and 10% hydrogen mix- 65 tures in grams per horse power hour(g/HpHr) vs. Equivalence ratio.

FIG. 9 shows a graph of exhaust emissions for natural gas and 20% hydrogen mixtures in parts per million(PPM) vs. Equivalence Ratio.

FIG. 10 shows an enlarged sectional graph of FIG. 9 of exhaust emissions for natural gas and 20% hydrogen mixtures in parts per million(PPM) vs. Equivalence Ratio.

FIG. 11 shows a graph of exhaust emissions for natural gas and 20% hydrogen mixtures in grams per horse power hour(g/HpHr) vs. Equivalence ratio.

FIG. 12 shows an enlarged sectional graph of FIG. 11 of exhaust emissions for natural gas and 20% hydrogen mixtures in grams per horse power hour(g/HpHr) vs. Equivalence ratio.

FIG. 13 shows a graph of exhaust emissions for natural gas and 28% hydrogen mixtures in parts per million(PPM) vs. Equivalence Ratio.

FIG. 14 shows an enlarged sectional graph of FIG. 13 of exhaust emissions for natural gas and 28% hydrogen mix-

FIG. 15 shows a graph of exhaust emissions for natural gas and 30% hydrogen mixtures in grams per horse power hour(g/HpHr) vs. Equivalence ratio.

FIG. 16 shows an enlarged sectional graph of FIG. 15 of exhaust emissions for natural gas and 30% hydrogen mixtures in grams per horse power hour(g/HpHr) vs. Equivalence ratio.

FIG. 17 shows a graph of exhaust emissions for natural gas and 36% hydrogen mixtures in parts per million(PPM) vs. Equivalence Ratio.

FIG. 18 shows an enlarged sectional graph of FIG. 17 of exhaust emissions for natural gas and 36% hydrogen mixtures in parts per million(PPM) vs. Equivalence Ratio.

FIG. 19 shows a graph of exhaust emissions for natural gas and 40% hydrogen mixtures in grams per horse power hour(g/HpHr) vs. Equivalence ratio.

FIG. 20 shows an enlarged sectional graph of FIG. 19 of exhaust emissions for natural gas and 40% hydrogen mix-⁴⁰ tures in grams per horse power hour(g/HpHr) vs. Equivalence ratio.

FIG. 21A and 21B is a Flow chart showing a preferred operation of the throttle control invention.

FIG. 22 is a schematic diagram showing a preferred system control connections for using the throttle control invention.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Before explaining the disclosed embodiment of the present invention in detail it is to be understood that the invention is not limited in its application to the details of the particular arrangement shown since the invention is capable of other embodiments. Also, the terminology used herein is for the purpose of description and not of limitation.

HYDROGEN ENRICHED NATURAL GAS FUELS

Tests were conducted with mixtures of hydrogen and natural gas. The fuels were mixed for the purpose of reducing emissions that are normally emitted by fossil fuels and to extend the lean combustion limit of natural gas by introducing hydrogen.

The engine used for these tests was a V-8. Chevrolet 350 which was rebuilt with the following specifications:

Bore:	4.030" (0.030 over bore from standard)
Stroke:	3.480"
Pistons:	Cast Aluminum, Flat top with 4 valve reliefs
Cam:	Stock
Cylinder heads:	76 cc
Valves:	Intake 1.94"
	Exhaust 1.50"
Compression Ratio:	9:1
Intake Manifold:	Aluminum Throttle Body
Exhaust Manifold:	1%" Steel pipe headers
Spark Plugs:	Autolite: 303 Gap: 0.035"
Ignition:	HEI with the vacuum spark advance removed
Wires:	Carbon Core
Carburetor:	Throttle body with Impco Gaseous fuel meter

The dynamometer used in the tests was a Computer Controlled Super Flow 901 with a maximum torque specification of 1000 lb ft. The dynamometer was calibrated prior to the beginning of testing. In addition, the dynamometer was checked for calibration drift due to the heating of the strain gage and was re-zeroed between each pull.

For the emissions monitoring a NOVA Model Number 7550/B was used to measure CO. CO_2 . O_2 . NO. NO_2 . NO_X . The instrument was modified by FSEC to output the results to an Analog to Digital Board mounted in an IBM- 25 compatible 286 computer. The NOVA was calibrated using certified span gases. The NOVA was zeroed using room air and was spanned using 35 ppm certified NO₂ span gas. 1402 ppm N-Hexane (Hydrocarbon). 8.993% Carbon Monoxide and 17.490% Carbon Dioxide. The hydrocarbons measured 30 in this testing were not speciated to determine the exact makeup of the total. It is generally known that approximately 80 to 90% of the total hydrocarbons are mon photo-reactive and are generally not considered to be a 35 significant pollutant.

The NO_2 span gas bottle contained a liner to prevent any reaction between the gas and the bottle. The instrument was

8

checked for zero drift before and after each test. In addition, the span was checked before and after each test sequence. Data was only accepted when both zero and span repeated within the limits of the instrumentation.

The emissions pickup tube was mounted in the collector pipe 14 inches from the primary pipes. Only stainless steel and Teflon tubing was used for exhaust gas delivery.

 The following engine and atmospheric condition and monitoring equipment was utilized during testing and collected by the dynamometer: Oil Pressure. Exhaust Gas Temperature, Water Temperature. RPM. Torque, Barometric Pressure. Humidity, Carburetor Air Temp, Air. and Oil
Temperature. The mass air flow was measured using a 6"calibrated turbine which was attached to the carburetor using a 6"sheet metal elbow. The exhaust gas temperature of each cylinder was monitored using a K type thermocouple mounted in an aluminum plate which was bolted between the head and the exhaust header. The thermocouples were mounted to take the exhaust temperature reading in the center of the exhaust stream.

For fuel flow, the mixture of CNG and hydrogen was fed into a Micro Motion Mass Flow Sensor. Model CMF 025. The Micro Motion Sensor operates using the coriolis effect, which negates the need for turbines and bearings thus substantially increasing the accuracy and repeatability of the gas flow measurements. The sensor was calibrated by Micro Motion and has a certified accuracy of 0.44% at a flow rate of 25 lbs per hour.

Each of the test runs were conducted at 17 horsepower and 1700 rpm. The testing was conducted at this level to simulate a light-duty truck traveling along a level paved road at 55 mph.

Each of the five tests included a varying mixture level volumes of hydrogen with natural gas. The results of tests 1-5 are listed in tables 1-5 respectively.

		TES	T 1 0%	HYDF	ROGEN	and 100	% Natural	Gas	
TEST	A/F	FUEL %	EQUT	v	CNG RPM	HP	MR	ETDC TIMING	TORQU
AAA-2	16.5	0	1.0424		1697	17	22	50	52.7
AAA-1	16.6	0	10.361		1695	17.1	23	50	53.1
AAA-3	16.8	0	1.0238	;	1698	16.8	22	50	52.9
AAB-2	17	0	1.0118		1698	17	22	49	52.5
AAB-3	17.2	0	1		1698	17	22	49	52.5
AAB-1	17.3	0	0.9942	:	1698	17	22	49	52.7
AAC-2	18.7	0	0.9198	:	1700	1639	22	51	52.1
AAC-3	18.8	0	0.9149	1	1699	17	22	51	52.5
AAC-1	19.1	0	0.9005		1700	17	22	51	52.5
AD-1	20.9	0	0.823		1697	16.8	22	51	52
AAD-3	21.1	0	0.8152	!	1694	17.7	23	51	53.4
AD-2	21.3	0	0.8075	i	1698	17.2	23	51	53.1
AAE-2	22.9	0	0.7511		1699	17.1	22	56	52.9
AAE-3	23	0	0.7478		1700	17.3	23	58	53.5
AAE-1	23.2	0	0.7414		1692	16.8	22	56	52.3
AAF-1	23.9	0	0.7197		1669	15.5	20	56	47.9
AAF-2	24.3	0	0.7078		1704	16.12	21	56	49.5
AAF-3	24.4	0	0.7049)	1704	15.7	21	56	48.5
	AVE	0%							
IEST	OIL TEMP	H2O TEMP	PPM NOX	PPM HC	PERC O2	ENT	A1 + A2 SCFM	NOX g/Hp/Hr	HC g/Hp/Hr
AAA-2	2 01	172	999	49.2	2.88		41.6	5.40	0.27
AAA-I	202	172	999	48.8	2.88		42	5.41	0.26
A A A - 3	203	173	999	48.9	2.93		41.6	5.46	0.27

				-(continue	d		
		TES	T 1 0%	HYDR	OGEN and	l 100% Natura	ll Gas	
AAB-2	205	172	999	47.6	3.37	42.6	5.52	0.26
AAB-3	206	171	999	46.8	3.38	42.4	5.49	0.26
AAB-1	206	173	999	46.7	9.98	42.5	5.50	0.26
AAC-2	206	172	56.2	5.2	46.1	3.54	0.34	
AAC-3	205	173	603.8	58.7	5.19	46.3	3.60	0.34
AAC-1	204	173	608.9	55.2	5.17	46.2	3.62	0.33
AAD-1	204	172	182.3	69.5	6.64	50.5	1.20	0.46
AAD-3	202	171	168.2	71.2	6.39	51.5	1.10	0.46
AAD-2	203	172	183.5	68.4	6.64	51.9	1.21	0.45
AAE-2	202	171	52.6	116.6	8.35	58.8	0.39	0.87
AAE-3	202	172	115.5	8.34	59.2	0.38	0.86	
AAE-1	203	171	56.9	115.8	8.32	59	0.43	0.88
AAF-1	199	172	32.1	184.4	9.21	82.6	0.28	1.61
AAF-2	200	171	209.1	9.34	63.4	0.24	1.76	
AAF-3	199	171	26.4	211.4	9.33	83.2	0.23	1.84

In Table 1, at an equivalence ratio of 1 on the stoichio-metric scale, the NO_X was beyond the scale of the NOVA instrument. At an equivalence ratio of 0.8333 the NO_X has fallen sharply, however, the hydrocarbons were beginning to

		TEST	2 11% HY	DROGEN	I AND 8	89% Natural	Gas	
TEST	A/F	FUEL %	EQUIV	RPM	нр	MR	ETDC TIMING	TORQUE
ABA-2	14.2	10.7	1.2324	1700	17.0	22	35	52.7
ABA-1	14.4	10.7	1.2153	1703	17	22	35	52.4
ABA-3	14.5	10.7	1.2069	1896	17.1	23	35	53.1
ABB-1	15.3	11.2	1.1438	1700	16.9	22	40	52.3
ABB-2	15.5	11.3	1.129	1699	16.8	22	40	52
ABB-3	15.6	11.5	1.1218	1699	17	22	40	52.4
ABC-3	17.2	11.8	10.174	1700	17	22	40	52.4
ABC-1	17.6	11.9	0.9943	1699	17.1	23	40	53
ABC-2	17.6	11.8	0.9943	1700	17.1	22	4 0	52.7
ABD-1	19.6	11.7	0.8929	1699	17.1	23	41	53
ABD-2	19.6	11.6	0.8929	1697	17.1	22	41	52.9
ABD-3	19.6	11.6	0.8929	1697	17.2	23	41	53.2
ABE-2	20.6	11.6	0.8495	1701	17.2	23	44	53.1
ABE-1	20.7	11.6	0.8454	1703	17.1	22	44	52.7
ABE-3	20.9	11.6	0.8373	1700	17. 1	22	44	52.7
ABF-3	22.9	11.5	0.7642	1699	17.2	23	45	53.2
ABE-1	23	11.5	0.7609	1701	16.9	22	45	52.1
ABE-2	23.4	11.5	0.7479	1699	17.1	22	45	52.9
ABG-2	25.9	11.5	0.6757	1701	17.1	22	55	52.7
ARG	28	11.5	0.6731	1706	17 1	22	55	52.5
ABG-1	26 3	11.5	0.6654	1706	17.1	22	55	52.3
льс-5	AVE	11.4%	0.0004	1700	17	22	55	52.5
TEST	OIL TEMP	H2O TEMP	PPM PP NOX HO	M PERC	ENT	A1 + A2 SCFM	NOX g/Hp/Hr	HC g/Hp/Hr
TEST	OIL TEMP	H2O TEMP 172	РРМ РР NOX Но 469.2 60	M PERC C O2	CENT	A1 + A2 SCFM 37.8	NOX g/Hp/Hr 2.31	HC g/Hp/Hr 0.30
TEST ABA-2 ABA-1	OIL TEMP 212 211	H2O TEMP 172 172	PPM PP NOX HC 469.2 60 454.9 61	M PERC C O2 .8 0.51	CENT	A1 + A2 SCFM 37.8 38	NOX g/Hp/Hr 2.31 2.26	HC g/Hp/Hr 0.30 0.3
TEST ABA-2 ABA-1 ABA-3	OIL TEMP 212 211 212	H2O TEMP 172 172 172	PPM PP NOX HC 469.2 60 454.9 61 491.7 61	M PERC O2 .8 0.51 .1 0.5 3 0.52	CENT	A1 + A2 SCFM 37.8 38 37 9	NOX g/Hp/Hr 2.31 2.26 2.42	HC g/Hp/Hr 0.30 0.3 0.30
TEST ABA-2 ABA-1 ABA-3 ABB-1	OIL TEMP 212 211 212 212 212	H2O TEMP 172 172 172 172 174	PPM PP NOX HC 469.2 60 454.9 61 491.7 61 999.5 49	M PER C O2 8 0.51 .1 0.5 .3 0.52 4 1.28	CENT	A1 + A2 SCFM 37.8 38 37.9 38 1	NOX g/Hp/Hr 2.31 2.26 2.42 5.00	HC g/Hp/Hr 0.30 0.3 0.30 0.25
TEST ABA-2 ABA-1 ABA-3 ABB-1 ABB-2	OIL TEMP 212 211 212 212 212 212	H2O TEMP 172 172 172 172 174 174	PPM PP NOX Ho 469.2 60 454.9 61 491.7 61 999.5 49 999.5 50	M PERC O2 8 0.51 1 0.5 3 0.52 4 1.28 8 1.27	CENT	A1 + A2 SCFM 37.8 38 37.9 38.1 38 2	NOX g/Hp/Hr 2.31 2.26 2.42 5.00 5.04	HC g/Hp/Hr 0.30 0.3 0.30 0.25 0.25
TEST ABA-2 ABA-1 ABA-3 ABB-1 ABB-2 ABB-3	OIL TEMP 212 211 212 212 212 212 212 213	H2O TEMP 172 172 172 172 174 174	PPM PP NOX H 469.2 60 454.9 61 491.7 61 999.5 50 999.5 50 999.5 48	M PERC O2 8 0.51 1 0.5 3 0.52 4 1.28 8 1.27 7 1.31	CENT	A1 + A2 SCFM 37.8 38 37.9 38.1 38.2 38.3	NOX g/Hp/Hr 2.31 2.26 2.42 5.00 5.04 4.99	HC g/Hp/Hr 0.30 0.3 0.30 0.25 0.25 0.25 0.24
TEST ABA-2 ABA-1 ABA-3 ABB-1 ABB-2 ABB-3 ABC-3	OIL TEMP 212 211 212 212 212 212 213 209	H20 TEMP 172 172 172 174 174 174	PPM PP NOX H0 469.2 60 454.9 61 491.7 61 999.5 49 999.5 49 999.5 48 854.4 41	M PER(0 C O2 .8 0.51 .1 0.5 .3 0.52 .4 1.28 .8 1.27 .7 1.31 % 3.32	CENT	A1 + A2 SCFM 37.8 38 37.9 38.1 38.2 38.3 41.6	NOX g/Hp/Hr 2.31 2.26 2.42 5.00 5.04 4.99 4.60	HC g/Hp/Hr 0.30 0.3 0.30 0.25 0.25 0.24 0.23
TEST ABA-2 ABA-1 ABA-3 ABB-1 ABB-2 ABB-3 ABC-3 ABC-1	OIL TEMP 212 211 212 212 212 212 213 209 200	H20 TEMP 172 172 172 174 174 174 174 174	PPM PP NOX H0 469.2 60 454.9 61 491.7 61 999.5 49 999.5 50 999.5 48 854.4 41 867.2 41	M PER(0 C O2 .8 0.51 .1 0.5 .3 0.52 .4 1.28 .8 1.27 .7 1.31 .8 3.32 .6 3.41	CENT	A1 + A2 SCFM 37.8 38 37.9 38.1 38.2 38.3 41.6 41.8	NOX g/Hp/Hr 2.31 2.26 2.42 5.00 5.04 4.99 4.60 4.65	HC g/Hp/Hr 0.30 0.3 0.30 0.25 0.25 0.25 0.24 0.23
TEST ABA-2 ABA-1 ABA-3 ABB-3 ABB-2 ABB-3 ABC-3 ABC-1 ABC-1	OIL TEMP 212 211 212 212 212 213 209 209	H2O TEMP 172 172 172 174 174 174 174 172 174	PPM PP NOX H0 469.2 60 454.9 61 491.7 61 999.5 50 999.5 50 999.5 48 854.4 41 867.2 41 867.2 41	M PER(O2 .8 0.51 .1 0.5 .3 0.52 .4 1.28 .8 1.27 .7 1.31 .8 3.32 .6 3.41 .2 2.325	CENT	A1 + A2 SCFM 37.8 38 37.9 38.1 38.2 38.3 41.6 41.8 42.1	NOX g/Hp/Hr 2.31 2.26 2.42 5.00 5.04 4.99 4.60 4.66 4.82	HC g/Hp/Hr 0.30 0.30 0.25 0.25 0.25 0.24 0.23 0.22
TEST ABA-2 ABA-1 ABA-3 ABB-1 ABB-2 ABB-3 ABC-3 ABC-1 ABC-2 ABC-2	OIL TEMP 212 211 212 212 212 212 213 209 209 209	H2O TEMP 172 172 172 174 174 174 174 172 174 172	PPM PP NOX H0 469.2 60 454.9 61 491.7 61 999.5 50 999.5 50 999.5 48 854.4 41 867.2 41 862.2 42 254.6 52	M PERC C O2 8 0.51 1 0.5 3 0.52 4 1.28 8 1.27 7 1.31 8 3.32 6 3.41 .2 3.35	CENT	A1 + A2 SCFM 37.8 38 37.9 38.1 38.2 38.3 41.6 41.8 42.1 46 6	NOX g/Hp/Hr 2.31 2.26 2.42 5.00 5.04 4.99 4.60 4.66 4.82	HC g/Hp/Hr 0.30 0.30 0.25 0.25 0.24 0.23 0.22 0.23 0.22 0.23
TEST ABA-2 ABA-1 ABA-3 ABB-1 ABB-2 ABB-3 ABC-3 ABC-1 ABC-2 ABD-1 ADD-1	OIL TEMP 212 211 212 212 212 212 213 209 209 209 209 209 209	H20 TEMP 172 172 172 174 174 174 174 174 174 174 174	PPM PP NOX H 469.2 60 454.9 61 491.7 61 999.5 49 999.5 58 854.4 41 867.2 41 862.2 42 256.2 52	M PER(C O2 8 0.51 1 0.5 3 0.52 4 1.28 8 1.27 7 1.31 8 3.32 6 3.41 2 3.35 1 5.48	CENT	A1 + A2 SCFM 37.8 38 37.9 38.1 38.2 38.3 41.6 41.8 42.1 46.6 44.8	NOX g/Hp/Hr 2.31 2.26 2.42 5.00 5.04 4.99 4.60 4.66 4.82 1.52	HC g/Hp/Hr 0.30 0.30 0.25 0.25 0.24 0.23 0.22 0.23 0.21
TEST ABA-2 ABA-1 ABB-3 ABB-2 ABB-3 ABC-3 ABC-3 ABC-1 ABC-2 ABD-1 ABD-2	OIL TEMP 212 211 212 212 212 212 213 209 209 209 209 209 209 208 207	H20 TEMP 172 172 172 174 174 174 174 174 174 173 172	PPM PP NOX H 469.2 60 454.9 61 491.7 61 999.5 50 999.5 50 999.5 48 854.4 41 867.2 41 862.2 42 254.6 52 259.3 52	M PERC C O2 8 0.51 1 0.5 3 0.52 4 1.28 8 3.32 6 3.41 2 3.35 1 5.48 1 5.47 0 5.47	CENT	A1 + A2 SCFM 37.8 38 37.9 38.1 38.2 38.3 41.6 41.8 42.1 46.6 46 46 46	NOX g/Hp/Hr 2.31 2.26 2.42 5.00 5.04 4.99 4.60 4.66 4.82 1.52 1.52 1.53	HC g/Hp/Hr 0.30 0.30 0.25 0.25 0.25 0.24 0.23 0.22 0.23 0.22 0.23 0.31 0.31
TEST ABA-2 ABA-1 ABB-3 ABB-3 ABB-3 ABC-3 ABC-1 ABC-2 ABD-1 ABD-2 ABD-3	OIL TEMP 212 211 212 212 212 213 209 209 209 209 209 209 209 209 209	H20 TEMP 172 172 174 174 174 174 174 174 174 173 172 171	PPM PP NOX H 469.2 60 454.9 61 491.7 61 999.5 50 999.5 50 999.5 48 854.4 41 867.2 41 862.2 42 254.6 52 259.3 52 259.4 51 457.5 61	M PERC C O2 8 0.51 1 0.5 3 0.52 4 1.28 8 1.27 7 1.31 8 3.32 6 3.41 2 3.35 1 5.48 1 5.47 9 5.48	CENT	A1 + A2 SCFM 37.8 38 37.9 38.1 38.2 38.3 41.6 41.8 42.1 46.6 46 46 46 5	NOX g/Hp/Hr 2.31 2.26 2.42 5.00 5.04 4.99 4.60 4.66 4.82 1.52 1.53 1.53 0.05	HC g/Hp/Hr 0.30 0.30 0.25 0.25 0.25 0.24 0.23 0.22 0.23 0.22 0.31 0.31 0.31
TEST ABA-2 ABA-1 ABA-3 ABB-1 ABB-2 ABB-3 ABC-3 ABC-1 ABD-1 ABD-2 ABD-1 ABD-2 ABD-3 ABE-2	OIL TEMP 212 211 212 212 212 213 209 209 209 209 209 208 207 207 207 207	H20 TEMP 172 172 174 174 174 174 174 174 174 174 173 172 171 172	PPM PP NOX H 469.2 60 454.9 61 491.7 61 999.5 50 999.5 50 999.5 48 854.4 41 862.2 42 254.6 52 259.3 52 259.4 51 157.6 61	M PERC C O2 8 0.51 1 0.5 3 0.52 4 1.28 8 1.27 7 1.31 8 3.32 6 3.41 2 3.35 1 5.48 1 5.47 9 5.48 4 6.5	CENT	A1 + A2 SCFM 37.8 38 37.9 38.1 38.2 38.3 41.6 41.8 42.1 46.6 46.6 46.5 48.5	NOX g/Hp/Hr 2.31 2.26 2.42 5.00 5.04 4.99 4.60 4.66 4.82 1.52 1.53 1.53 1.53 0.97	HC g/Hp/Hr 0.30 0.30 0.25 0.25 0.24 0.23 0.22 0.23 0.31 0.31 0.31 0.31 0.31 0.32
TEST ABA-2 ABA-3 ABB-3 ABB-3 ABC-3 ABC-3 ABC-1 ABC-2 ABC-1 ABD-2 ABD-3 ABE-2 ABE-1	OIL TEMP 212 211 212 212 213 209 209 209 209 209 209 207 207 207 207	H20 TEMP 172 172 174 174 174 174 174 174 174 174 174 174	PPM PP NOX H 469.2 60 454.9 61 491.7 61 999.5 49 999.5 48 854.4 41 867.2 41 862.2 42 254.6 52 259.3 52 259.4 51 157.6 61 168.8 61	M PERC O2 O2 8 0.51 .1 0.5 .3 0.52 .4 1.28 .8 1.27 .7 1.31 .6 3.41 .2 3.35 .1 5.48 .1 5.47 .9 5.48 .4 6.5 .5 6.44	CENT	A1 + A2 SCFM 37.8 38 37.9 38.1 38.2 38.3 41.6 41.8 42.1 46.6 46 46.5 48.5 48.5 48.8	NOX g/Hp/Hr 2.31 2.26 2.42 5.00 5.04 4.99 4.60 4.66 4.82 1.53 1.53 1.53 0.97 10.5	HC g/Hp/Hr 0.30 0.30 0.25 0.25 0.24 0.23 0.22 0.23 0.31 0.31 0.31 0.31 0.38 0.38
TEST ABA-2 ABA-1 ABA-3 ABB-1 ABB-2 ABB-3 ABC-1 ABC-2 ABD-1 ABD-2 ABD-2 ABD-2 ABD-2 ABD-1 ABD-2 ABD-1 ABD-2 ABD-1 ABD-2	OIL TEMP 212 211 212 212 213 209 209 209 209 209 209 209 209 209 209	H20 TEMP 172 172 172 174 174 174 174 174 174 174 174 174 172 171 172 171 173	PPM PP NOX H 469.2 60 454.9 61 491.7 61 999.5 49 999.5 50 985.4 41 867.2 41 862.2 42 254.6 52 259.3 52 259.4 51 157.6 61 173.7 60	M PERC 02 02 8 0.51 1 0.5 3 0.52 4 1.28 8 1.27 7 1.31 8 3.32 6 3.41 .2 3.35 1 5.48 .1 5.47 .9 5.48 .4 6.5 .5 6.44 .6 6.41	CENT	A1 + A2 SCFM 37.8 38 37.9 38.1 38.2 38.3 41.6 41.8 42.1 46.6 46.5 48.5 48.5 48.8 48.7	NOX g/Hp/Hr 2.31 2.26 2.42 5.00 5.04 4.99 4.60 4.66 4.82 1.52 1.53 1.53 0.97 10.5 1.08	HC g/Hp/Hr 0.30 0.30 0.25 0.25 0.24 0.23 0.22 0.23 0.31 0.31 0.31 0.38 0.38 0.38
TEST ABA-2 ABA-1 ABA-3 ABB-1 ABB-2 ABB-3 ABC-1 ABC-2 ABD-1 ABD-2 ABD-3 ABE-3 ABE-3 ABF-3	OIL TEMP 212 211 212 212 213 209 209 209 209 209 209 209 209 207 207 207 207 207 205 207 205 203	H20 TEMP 172 172 172 174 174 174 174 174 174 174 173 172 171 172 171 173 171	PPM PP NOX H 469.2 60 454.9 61 491.7 61 999.5 50 999.5 50 999.5 49 929.5 48 854.4 41 862.2 42 259.3 52 259.4 51 157.6 61 168.8 61 173.7 60 46.1 76	M PERC O2 O2 8 0.51 1 0.5 3 0.52 4 1.28 8 1.27 7 1.31 8 3.32 6 3.41 2 3.35 1 5.48 4 5.47 9 5.48 4 6.5 5 6.44 1 8.02	CENT	A1 + A2 SCFM 37.8 38 37.9 38.1 38.2 38.3 41.6 41.8 42.1 46.6 46 46.5 48.5 48.5 48.8 48.7 55.3	NOX g/Hp/Hr 2.31 2.26 2.42 5.00 5.04 4.99 4.60 4.66 4.82 1.52 1.53 1.53 1.53 1.53 0.97 10.5 1.08 0.32	HC g/Hp/Hr 0.30 0.3 0.25 0.25 0.24 0.23 0.22 0.23 0.31 0.31 0.31 0.38 0.38 0.38 0.38 0.38 0.38
TEST ABA-2 ABA-1 ABA-3 ABB-1 ABB-2 ABB-3 ABC-3 ABC-1 ABD-2 ABD-1 ABD-2 ABD-1 ABD-2 ABD-3 ABE-1 ABF-3 ABF-1	OIL TEMP 212 211 212 212 213 209 209 209 209 209 209 209 209 209 209	H20 TEMP 172 172 174 174 174 174 174 174 174 173 172 171 172 171 172 171 172	PPM PP NOX 469.2 60 454.9 61 491.7 61 999.5 50 999.5 50 999.5 50 999.5 50 999.5 48 854.4 41 867.2 42 254.6 52 259.3 52 259.4 51 157.6 61 168.8 61 173.7 60 46.1 76 44.8 76 76 76	M PERC 02 02 8 0.51 1 0.5 3 0.52 4 1.28 8 1.27 7 1.31 8 3.32 6 3.41 1 5.48 1 5.47 9 5.48 4 6.5 5 6.44 6 6.41 1 8.02 5 8.06	CENT	A1 + A2 SCFM 37.8 38 37.9 38.1 38.2 38.3 41.6 41.8 42.1 46.6 46 46.5 48.5 48.5 48.5 48.8 48.7 55.3 55.1	NOX g/Hp/Hr 2.31 2.26 2.42 5.00 5.04 4.99 4.60 4.66 4.82 1.52 1.53 1.53 0.97 10.5 1.08 0.32 0.32	HC g/Hp/Hr 0.30 0.3 0.25 0.25 0.24 0.23 0.22 0.23 0.31 0.31 0.31 0.31 0.31 0.38 0.38 0.38 0.53 0.54
TEST ABA-2 ABA-1 ABA-3 ABB-3 ABB-2 ABB-3 ABC-3 ABC-1 ABC-2 ABD-1 ABD-3 ABD-3 ABD-3 ABE-2 ABE-1 ABF-1 ABF-1 ABF-2	OIL TEMP 212 211 212 212 213 209 209 209 209 209 209 209 209 207 207 205 207 205 207 205 207 205 203 206 205	H2O TEMP 172 172 174 174 174 174 174 174 174 174 174 173 171 172 171 173 171 172 171	PPM PP NOX H 469.2 60 454.9 61 491.7 61 999.5 49 999.5 50 999.5 48 854.4 41 867.2 41 862.2 42 259.3 52 259.4 51 157.6 61 168.8 61 173.7 60 46.1 76 44.8 76 43.4 77	M PERC O2 02 8 0.51 .1 0.5 .3 0.52 .4 1.28 .8 1.27 .7 1.31 .8 3.32 .6 3.41 .2 3.35 .1 5.48 .1 5.47 .9 5.48 .4 6.5 .5 6.44 .6 6.41 .1 8.02 .5 8.06 .2 8.05	CENT	A1 + A2 SCFM 37.8 38 37.9 38.1 38.2 38.3 41.6 41.8 42.1 46.6 46 46.5 48.5 48.5 48.8 48.7 55.3 55.1 55.5	NOX g/Hp/Hr 2.31 2.26 2.42 5.00 5.04 4.99 4.60 4.66 4.82 1.52 1.53 1.53 0.97 10.5 1.08 0.32 0.32 0.31	HC g/Hp/Hr 0.30 0.3 0.25 0.25 0.24 0.23 0.22 0.23 0.31 0.31 0.31 0.31 0.31 0.38 0.38 0.38 0.53 0.54 0.54

11

				-0	ontinue	d		
		TES	T 2 11%	HYDR	OGEN AN	D 89% Natu	al Gas	
ABG-1	204	171	23.4	142.6	9.65	63.9	0.19	1.15
ABG-3	202	172	24.3	140.6	9.61	63.5	0.20	1.13

The INC_X was approximately 450 ppm. The NO_X climbed rapidly as the air to fuel mixture was leaned out. At an equivalence ratio of approximately 1.1 the NO_X had risen beyond the instrument capability. At stoiching the stoiching of the sto equivalence ratio of 1) the NO_X is beginning to fall sharply and is reduced from that observed with no hydrogen added

Although the engine did not appear to be at the lean limit, the hydrocarbons had risen beyond acceptable limits.

		TEST 3	3. 20% H	YDRO	FEN AND 8	0% Natur	al Ga	IS	
TEST	A/F	FUEL %	EQUIV	RPM	НР	ME	BTI TIM	XC LING 1	ORQUE
ACA-2	15	19.7	1.1833	1700	17	22	35	5	2.5
ACA-1	15.1	19.5	1.1755	1702	17	22	35	5	2.4
ACA-3	15.3	19.8	1.1601	1705	17	22	35	5	2.4
ACB-2	17.7	19.8	1.0028	1699	17.2	23	39	5	3.2
ACB-3	17.9	19.9	0.9916	1701	17.2	23	39	5	3
ACB-1	18	19.8	0.9861	1698	17.3	23	39	5	3.4
ACC-1	19.2	19.9	0.9245	1701	17	22	43	5	2.5
ACC-3	19.4	20	0.9149	1700	17	22	43	3	2.4
ACC-2	19.5	10.0	0.9105	1404	17 1	22	43	5	2.0
ACD-2	20.7	19.9	0.6373	1700	17.1	22	45		2.9
ACD-1	21.1	20	0.8412	1600	17.1	22	45	5	2.7
ACE-3	22.2	20	0.7995	1700	17	22	51	5	2.4
ACE-2	22.2	20	0.7819	1600	17 1	23	51	5	3
ACE-1	22.9	20	0.7751	1698	17.1	22	51	5	2.6
ACF-2	24.8	20.1	0.7215	1697	17.1	22	55	5	2.9
ACF-3	24.6	20	0.7215	1698	16.9	22	55	5	2.3
ACF-1	25	20	0.71	1699	17	22	55	5	2.7
ACG-2	26.1	20	0.6801	1699	17.1	22	59	5	2.9
ACG-3	26.6	20	0.6673	1697	17	22	59	5	2.6
ACG-I	27	20	0.6574	1669	17	22	59	5	2.7
ACH-1	27.9	20	0.6382	1700	16	21	60+	4	9.3
ACH-2	28	20	0.6339	1709	16.5	22	60+	5	0.6
ACH-3	28.1	20	0.8317	1703	16.2	21	60+	4	9.9
	AVE	19.9%							
_		17.7 %		-					
TEST	OIL TEMP	H2O TEMP	PPM NOX	PPM HC	PERCENT O2	A1 + J SCFM	A2 [NOX g/Hp/Hr	HC g/Hp/Hr
TEST ACA-2	OIL TEMP 212	H2O TEMP 172	PPM NOX 827.5	PPM HC 52.7	PERCENT 02 0.81	A1 + 2 SCFM 37.5	A2 [NOX g/Hp/Hr 4.05	HC g/Hp/Hr
TEST ACA-2 ACA-1	OIL TEMP 212 219	H20 TEMP 172 174	PPM NOX 827.5 824.7	PPM HC 52.7 54.9	PERCENT O2 0.81 0.83	A1 + 2 SCFM 37.5 37.5	A2 [NOX g/Hp/Hr 4.05 4.04	HC g/Hp/Hr 0.26 0.27
TEST ACA-2 ACA-1 ACA-3	OIL TEMP 212 219 212	H20 TEMP 172 174 174	PPM NOX 827.5 824.7 827.6	PPM HC 52.7 54.9 53.3	PERCENT O2 0.81 0.83 0.82	A1 + 4 SCFM 37.5 37.5 37.6	A2 [NOX g/Hp/Hr 4.05 4.04 4.06	HC g/Hp/Hr 0.26 0.27 0.28
TEST ACA-2 ACA-1 ACA-3 ACB-2	OIL TEMP 212 219 212 210	H20 TEMP 172 174 174 172	PPM NOX 827.5 824.7 827.6 999.5	PPM HC 52.7 54.9 53.3 41.1	PERCENT O2 0.81 0.83 0.82 3.81	A1 + 7 SCFM 37.5 37.5 37.6 42.1	A2 [NOX g/Hp/Hr 4.05 4.04 4.06 5.38	HC g/Hp/Hr 0.26 0.27 0.28 0.22
TEST ACA-2 ACA-1 ACA-3 ACB-2 ACB-3	OIL TEMP 212 219 212 210 210 210	H20 TEMP 172 174 174 172 172	PPM NOX 827.5 824.7 827.6 999.5 999.5	PPM HC 52.7 54.9 53.3 41.1 41.8	PERCENT O2 0.81 0.83 0.82 3.81 3.68	A1 + 2 SCFM 37.5 37.5 37.6 42.1 42	A2 I	NOX g/Hp/Hr 4.05 4.04 4.06 5.38 5.36	HC g/Hp/Hr 0.26 0.27 0.28 0.22 0.22
TEST ACA-2 ACA-1 ACA-3 ACB-2 ACB-3 ACB-1	OIL TEMP 212 219 212 210 210 210 212	H20 TEMP 172 174 174 172 172 172	PPM NOX 827.5 824.7 827.6 999.5 999.5 999.5	PPM HC 52.7 54.9 53.3 41.1 41.8 41.1	PERCENT O2 0.81 0.83 0.82 3.81 3.68 3.63	A1 + 2 SCFM 37.5 37.5 37.6 42.1 42 42.3	A2 [NOX g/Hp/Hr 4.05 4.04 4.06 5.38 5.36 5.37	HC g/Hp/Hr 0.26 0.27 0.28 0.22 0.22 0.22
TEST ACA-2 ACA-1 ACA-3 ACB-2 ACB-3 ACB-1 ACC-1	OIL TEMP 212 219 212 210 210 210 212 210	H20 TEMP 172 174 174 174 172 172 172 172 173	PPM NOX 827.5 824.7 827.6 999.5 999.5 999.5 775.1	PPM HC 52.7 54.9 53.3 41.1 41.8 41.1 47.3	PERCENT O2 0.81 0.83 0.82 3.81 3.68 3.63 4.86	A1 + 7 SCFM 37.5 37.5 37.6 42.1 42 42.3 44.8	A2 I	NOX g/Hp/Hr 4.05 4.04 4.06 5.38 5.36 5.37 4.47	HC g/Hp/Hr 0.26 0.27 0.28 0.22 0.22 0.22 0.22 0.22 0.27
TEST ACA-2 ACA-1 ACA-3 ACB-2 ACB-3 ACB-1 ACC-1 ACC-1	OIL TEMP 212 219 212 210 210 210 212 210 212 210 209	H20 TEMP 172 174 174 174 172 172 172 172 173 173	PPM NOX 827.5 824.7 827.6 999.5 999.5 999.5 775.1 773.3	PPM HC 52.7 54.9 53.3 41.1 41.8 41.1 47.3 46.6	PERCENT O2 0.81 0.83 0.82 3.81 3.68 3.63 4.86 4.89	A1 + 2 SCFM 37.5 37.5 37.6 42.1 42 42.3 44.8 44.3	A2 I	NOX g/Hp/Hr 4.05 4.04 4.06 5.38 5.36 5.37 4.47 4.41	HC g/Hp/Hr 0.26 0.27 0.28 0.22 0.22 0.22 0.22 0.22 0.27 0.27
TEST ACA-2 ACA-1 ACA-3 ACB-2 ACB-3 ACB-1 ACC-1 ACC-1 ACC-3 ACC-2	OIL TEMP 212 219 212 210 210 210 212 210 209 210	H2O TEMP 172 174 174 172 172 172 172 173 173 173	PPM NOX 827.5 824.7 827.6 999.5 999.5 999.5 775.1 773.3 802.7	PPM HC 52.7 54.9 53.3 41.1 41.8 41.1 47.3 46.6 46.9	PERCENT O2 0.81 0.83 0.82 3.81 3.68 3.63 4.86 4.89 4.84	A1 + 4 SCFM 37.5 37.5 37.6 42.1 42 42.3 44.8 44.3 44.7	A2 [NOX g/Hp/Hr 4.05 4.04 4.06 5.38 5.36 5.37 4.47 4.41 4.82	HC g/Hp/Hr 0.26 0.27 0.28 0.22 0.22 0.22 0.22 0.27 0.27 0.27
TEST ACA-2 ACA-1 ACA-3 ACB-3 ACB-3 ACB-1 ACC-1 ACC-1 ACC-3 ACC-2 ACC-2	OIL TEMP 212 219 212 210 210 210 210 209 210 209 210 206	H20 TEMP 172 174 174 172 172 173 173 173 173	PPM NOX 827.5 824.7 827.6 999.5 999.5 999.5 999.5 775.1 773.3 802.7 292.5	PPM HC 52.7 54.9 53.3 41.1 41.8 41.1 47.3 46.6 46.9 55.6	PERCENT O2 0.81 0.83 0.82 3.81 3.68 3.63 4.86 4.89 4.84 6.19	A1 + + , SCFM 37.5 37.5 37.6 42.1 42 42.3 44.8 44.3 44.7 47.3	A2 [NOX g/Hp/Hr 4.05 4.04 4.06 5.38 5.36 5.37 4.47 4.41 4.82 1.77	HC g/Hp/Hr 0.26 0.27 0.28 0.22 0.22 0.22 0.22 0.27 0.27 0.27 0.27
TEST ACA-2 ACA-1 ACA-3 ACB-2 ACB-3 ACB-1 ACC-3 ACC-1 ACC-1 ACC-2 ACD-2 ACD-2	OIL TEMP 212 219 212 210 210 210 210 209 210 209 210 206 207	H20 TEMP 172 174 174 172 172 172 173 173 173 173 173	PPM NOX 827.5 824.7 827.6 999.5 999.5 999.5 775.1 773.3 802.7 292.5 300.7	PPM HC 52.7 54.9 53.3 41.1 41.8 41.1 47.3 46.6 46.9 55.6 55.6 55.6	PERCENT O2 0.81 0.83 0.82 3.81 3.68 3.63 4.86 4.89 4.84 6.19 6.16	A1 + 4 SCFM 37.5 37.5 37.6 42.1 42 42.3 44.8 44.3 44.7 47.3 47.3	A2 I	NOX g/Hp/Hr 4.05 4.04 4.06 5.38 5.36 5.37 4.47 4.41 4.82 1.77 1.81	HC g/Hp/Hr 0.26 0.27 0.28 0.22 0.22 0.22 0.22 0.27 0.27 0.27 0.27
TEST ACA-2 ACA-1 ACA-3 ACB-2 ACB-3 ACB-1 ACC-1 ACC-1 ACC-2 ACC-2 ACD-2 ACD-2 ACD-1 ACD-3	OIL TEMP 212 219 212 210 210 210 210 209 210 209 210 206 207 206	H20 TEMP 172 174 174 174 172 172 173 173 173 173 173 173 173	PPM NOX 827.5 824.7 827.6 999.5 999.5 999.5 775.1 773.3 802.7 292.5 300.7 288.5	PPM HC 52.7 54.9 53.3 41.1 41.8 41.1 47.3 46.6 46.9 55.6 55.6 55.6 55.6	PERCENT O2 0.81 0.83 0.82 3.81 3.63 4.86 4.89 4.84 6.19 6.16 6.16 6.16	A1 + 4 SCFM 37.5 37.6 42.1 42 42.3 44.8 44.3 44.7 47.3 47.3 47.3	A2 [NOX g/Hp/Hr 4.05 5.38 5.36 5.37 4.47 4.41 4.82 1.77 1.81 1.75	HC g/Hp/Hr 0.26 0.27 0.28 0.22 0.22 0.22 0.27 0.27 0.27 0.27 0.34 0.34 0.34
TEST ACA-2 ACA-1 ACA-3 ACB-2 ACB-3 ACB-1 ACC-1 ACC-3 ACC-1 ACC-2 ACD-1 ACD-2 ACD-2 ACD-1 ACD-3 ACD-3 ACD-3	OIL TEMP 212 219 212 210 210 210 210 209 210 206 207 206 206 207	H20 TEMP 172 174 174 174 172 172 173 173 173 173 173 173 173 172 172 172	PPM NOX 827.5 824.7 827.6 999.5 999.5 999.5 775.1 773.3 802.7 292.5 300.7 288.5 180.9	PPM HC 52.7 54.9 53.3 41.1 41.8 41.1 47.3 46.6 46.9 55.6 55.6 55.6 55.6 66.5	PERCENT O2 0.81 0.83 0.82 3.81 3.63 4.86 4.89 4.84 6.19 6.16 6.16 6.16 6.16 7.42	A1 + 2 SCFM 37.5 37.5 37.6 42.1 42 42.3 44.8 44.3 44.7 47.3 47.3 47.3 50.3	A 2 I	NOX g/Hp/Hr 4.05 4.04 4.06 5.38 5.36 5.37 4.47 4.41 4.82 1.77 1.81 1.75 1.22	HC g/Hp/Hr 0.26 0.27 0.28 0.22 0.22 0.22 0.22 0.27 0.27 0.27 0.27
TEST ACA-2 ACA-1 ACA-3 ACB-3 ACB-1 ACC-3 ACC-1 ACC-1 ACC-2 ACD-2 ACD-2 ACD-2 ACD-1 ACC-3 ACE-3 ACE-2	OIL TEMP 212 219 212 210 210 210 210 209 210 209 206 207 206 207 206 207	H20 TEMP 172 174 174 172 172 173 173 173 173 173 173 173 172 172 172	PPM NOX 827.5 824.7 827.6 999.5 999.5 999.5 7775.1 773.3 802.7 292.5 300.7 288.5 180.9 200.2	PPM HC 52.7 54.9 53.3 41.1 41.8 41.1 47.3 46.6 46.9 55.6 55.6 55.6 55.6 66.5 65.8	PERCENT O2 0.81 0.83 0.82 3.81 3.68 3.63 4.86 4.89 4.84 6.19 6.16 6.16 7.42 7.35 7.35	A1 + 2 SCFM 37.5 37.5 37.6 42.1 42 42.3 44.8 44.3 44.7 47.3 47.3 47.3 50.3 51	A 2 I	NOX g/Hp/Hr 4.05 4.04 4.06 5.38 5.36 5.37 4.47 4.41 4.82 1.77 1.81 1.75 1.22 1.30	HC g/Hp/Hr 0.26 0.27 0.28 0.22 0.22 0.22 0.27 0.27 0.27 0.27 0.27
TEST ACA-2 ACA-1 ACA-3 ACB-3 ACB-1 ACB-3 ACB-1 ACC-1 ACC-1 ACC-1 ACC-2 ACD-1 ACC-3 ACC-2 ACD-1 ACC-3 ACE-2 ACE-2 ACE-1 ACE-1	OIL TEMP 212 219 212 210 210 210 209 210 209 210 209 200 206 207 206 205 206 205 206	H20 TEMP 172 174 174 172 172 172 173 173 173 173 173 173 172 172 173 172 172	PPM NOX 827.5 824.7 827.6 999.5 999.5 775.1 773.3 802.7 292.5 300.7 288.5 180.9 200.2 200.7	PPM HC 52.7 54.9 53.3 41.1 41.8 41.1 47.3 46.6 46.9 55.6 55.6 55.6 66.5 65.8 65.8 65.8	PERCENT O2 0.81 0.83 0.82 3.63 3.63 4.86 4.89 4.84 6.19 6.16 6.16 6.16 6.16 6.16 7.42 7.35 7.34 9.62	A1 + 2 SCFM 37.5 37.5 37.6 42.1 42 42.3 44.8 44.3 44.3 44.7 47.3 47.3 50.3 51 50.9 55	A2 [NOX g/Hp/Hr 4.05 4.04 4.06 5.38 5.36 5.37 4.47 4.41 4.82 1.77 1.81 1.75 1.22 1.30 1.31 0.47	HC g/Hp/Hr 0.26 0.27 0.28 0.22 0.22 0.22 0.27 0.27 0.27 0.27 0.27
TEST ACA-2 ACA-1 ACA-3 ACB-3 ACB-3 ACB-1 ACC-1 ACC-3 ACC-2 ACD-2 ACD-2 ACD-2 ACD-2 ACD-3 ACE-2 ACE-2 ACE-1 ACE-2 ACE-2	OIL TEMP 212 219 212 210 210 212 210 209 210 206 207 206 207 206 205 206 205 206 205 206 205	H20 TEMP 172 174 174 174 172 172 173 173 173 173 173 173 173 173 172 173 172 173 172 173 172 173 172 173 172	PPM NOX 827.5 824.7 827.6 999.5 999.5 775.1 773.3 802.7 200.7 288.5 300.7 288.5 300.7 288.5 180.0 2 200.7 67.9	PPM HC 52.7 54.9 53.3 41.1 41.8 41.1 47.3 46.6 46.9 55.6 55.6 55.6 55.6 55.6 55.6 55.6 86.5 65.8 81.1 21 21 21 21 21 21 21 21 21 21 21 21 21	PERCENT O2 0.81 0.83 0.82 3.81 3.68 3.63 4.86 4.89 4.84 6.19 6.16 6.16 6.16 7.42 7.35 7.34 8.63 9.49	A1 + 4 SCFM 37.5 37.5 37.6 42.1 42 42.3 44.8 44.3 44.3 44.3 44.3 47.3 47.3 50.9 55.1 50.9 55.1	A2 I	NOX g/Hp/Hr 4.05 4.04 4.06 5.38 5.37 4.47 4.41 4.82 1.77 1.81 1.75 1.22 1.30 1.31 0.47	HC g/Hp/Hr 0.26 0.27 0.28 0.22 0.22 0.22 0.27 0.27 0.27 0.27 0.34 0.34 0.34 0.34 0.43 0.43 0.43 0.43
TEST ACA-2 ACA-1 ACA-3 ACB-3 ACB-3 ACB-3 ACB-1 ACC-1 ACC-1 ACC-3 ACC-1 ACC-3 ACC-2 ACD-2 ACD-2 ACD-2 ACD-2 ACD-3 ACE-3 ACF-1 ACF-2 ACF-3 ACF-1	OIL. TEMP 212 219 212 210 210 210 210 200 210 200 206 207 206 205 206 205 206 205 206 204 203 204	H20 TEMP 172 174 174 174 172 172 173 173 173 173 173 173 173 173 172 172 173 173 172 172 173 173 173 173 173 173 174	PPM NOX 827.5 824.7 827.6 999.5 999.5 775.1 773.3 802.7 292.5 300.7 288.5 180.9 200.2 200.7 67.9 66.4	PPM HC 52.7 54.9 53.3 41.1 41.8 41.1 47.3 46.6 46.9 55.6 55.6 55.6 66.5 65.8 65.8 81.1 81.7 80.0	PERCENT O2 0.81 0.83 0.82 3.81 3.68 3.63 4.86 4.89 4.84 6.19 6.16 6.16 6.16 6.16 7.42 7.35 7.34 8.63 8.68 8.63	A1 + 4 SCFM 37.5 37.5 37.6 42.1 42 42.3 44.8 44.3 44.3 44.3 44.3 47.3 47.3 50.3 51 50.9 55.1 55.2 55.5	A2 I	NOX g/Hp/Hr 4.05 4.04 4.06 5.38 5.36 5.37 4.47 4.41 4.82 1.77 1.81 1.75 1.22 1.30 1.31 0.47 0.47	HC g/Hp/Hr 0.26 0.27 0.28 0.22 0.22 0.22 0.27 0.27 0.27 0.27 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.43 0.43
TEST ACA-2 ACA-1 ACA-3 ACB-2 ACB-3 ACB-1 ACC-3 ACC-1 ACC-3 ACC-2 ACD-1 ACC-3 ACC-2 ACD-1 ACC-3 ACD-3 ACE-2 ACE-3 ACE-2 ACF-3 ACF-3 ACF-1 ACC-1 ACC-1 ACC-3	OIL. TEMP 212 219 212 210 210 210 200 200 200 200 200 200	H20 TEMP 172 174 174 174 172 172 173 173 173 173 173 173 172 172 173 173 172 171 170 171 170 171	PPM NOX 827.5 824.7 827.6 999.5 999.5 775.1 773.3 802.7 299.5 300.7 288.5 180.9 200.7 288.5 180.9 200.2 200.7 67.9 66.8 66.1 34.9	PPM HC 52.7 54.9 53.3 41.1 41.8 41.1 47.3 46.6 46.9 55.6 55.6 55.6 55.6 55.6 66.5 65.8 81.1 81.7 80.9 96.3	PERCENT O2 0.81 0.83 0.82 3.81 3.63 4.86 4.89 4.84 6.19 6.16 6.16 6.16 6.16 6.16 7.42 7.35 7.34 8.63 8.63 8.63 8.63 9.49	A1 + 7 SCFM 37.5 37.6 42.1 42 42.3 44.8 44.3 44.7 47.3 47.3 47.3 50.3 51 50.9 55.1 55.2 55.5 50.2	A2 I	NOX g/Hp/Hr 4.05 4.04 4.06 5.38 5.36 5.37 4.47 4.41 4.82 1.77 1.81 1.75 1.22 1.30 1.31 0.47 0.47 0.47 0.27	HC g/Hp/Hr 0.26 0.27 0.28 0.22 0.22 0.22 0.27 0.27 0.27 0.27 0.34 0.34 0.34 0.34 0.34 0.43 0.43 0.57 0.58 0.57 0.73
TEST ACA-2 ACA-1 ACA-3 ACB-2 ACB-3 ACB-1 ACC-3 ACC-1 ACC-1 ACC-2 ACD-2 ACD-2 ACD-1 ACC-3 ACE-3 ACE-3 ACE-3 ACF-1 ACF-3 ACF-1 ACF-3 ACF-1 ACG-3	OIL TEMP 212 219 210 210 210 210 209 210 209 210 209 200 206 207 206 205 206 205 206 205 206 204 203 204 203 204 202	H20 TEMP 172 174 174 174 172 172 173 173 173 173 173 173 173 172 172 171 170 171 170 171 172	PPM NOX 827.5 824.7 827.6 999.5 999.5 999.5 999.5 775.1 773.3 802.7 292.5 300.7 288.5 180.9 200.2 200.7 67.9 66.8 66.1 34.9	PPM HC 52.7 54.9 53.3 41.1 41.8 41.1 47.3 46.6 46.9 55.6 55.6 65.8 65.8 65.8 65.8 65.8 65.8	PERCENT O2 0.81 0.83 0.82 3.81 3.63 4.86 4.89 4.84 6.19 6.16 6.16 6.16 7.42 7.35 7.34 8.63 8.63 8.63 9.49 9 49	A1 + 2 SCFM 37.5 37.6 42.1 42 42.3 44.8 44.3 44.7 47.3 47.3 50.3 51 50.9 55.1 55.2 55.5 60.2 50.7	A2 [NOX g/Hp/Hr 4.05 4.04 4.06 5.38 5.36 5.37 4.47 4.41 4.82 1.77 1.81 1.75 1.22 1.30 0.47 0.47 0.47 0.27 0.26	HC g/Hp/Hr 0.26 0.27 0.28 0.22 0.22 0.22 0.27 0.27 0.27 0.27 0.27
TEST ACA-2 ACA-1 ACA-3 ACB-3 ACB-1 ACB-3 ACB-1 ACC-1 ACC-1 ACC-2 ACD-1 ACC-2 ACD-1 ACC-3 ACC-2 ACD-1 ACC-3 ACE-2 ACE-1 ACF-2 ACF-1 ACF-1 ACF-1 ACF-1 ACG-2 ACG-1	OIL TEMP 212 219 210 210 210 210 200 200 200 200 200 200	H20 TEMP 172 174 174 174 172 172 173 173 173 173 173 173 173 173 173 173	PPM NOX 827.5 824.7 827.6 9995.5 9995.5 775.1 773.3 802.7 2925.5 300.7 2925.5 300.7 2925.5 300.7 2925.5 300.7 292.5 300.7 202.5 300.7 202.5 300.7 202.5 300.7 30.2 200.5 30.7 202.5 300.7 202.5 200.5	PPM HC 52.7 54.9 53.3 41.1 41.8 41.1 47.3 46.6 55.6 55.6 55.6 55.6 55.6 66.5 65.8 81.1 81.7 80.9 96.3 96.3 96.9	PERCENT O2 0.81 0.82 3.81 3.63 4.86 4.89 4.84 6.19 6.16 6.16 6.16 6.16 6.16 6.16 6.16	A1 + 4 SCFM 37.5 37.5 37.6 42.1 42 42.3 44.8 44.3 44.7 47.3 47.3 47.3 47.3 50.9 55.1 50.9 55.1 55.5 60.2 55.5 60.2 50.7 59.9	A2 [NOX g/Hp/Hr 4.05 4.04 4.06 5.38 5.36 5.37 4.47 4.41 4.82 1.77 1.81 1.77 1.81 1.75 1.22 1.30 1.31 0.47 0.47 0.47 0.27 0.27	HC g/Hp/Hr 0.26 0.27 0.28 0.22 0.22 0.22 0.27 0.27 0.27 0.27 0.27
TEST ACA-2 ACA-1 ACA-3 ACB-3 ACB-3 ACB-1 ACC-1 ACC-3 ACC-2 ACD-2 ACD-2 ACD-2 ACD-2 ACD-3 ACC-2 ACD-3 ACE-3 ACE-1 ACF-2 ACF-3 ACF-1 ACG-2 ACG-3 ACG-1 ACG-2 ACG-3 ACG-1 ACG-1	OIL TEMP 212 219 212 210 210 210 210 200 200 200 200 200	H20 TEMP 172 174 174 174 172 173 173 173 173 173 173 173 173 173 173	PPM NOX 827.5 824.7 827.6 9995.5 9995.5 775.1 773.3 802.7 200.7 200.7 200.7 67.9 66.8 66.1 34.9 34.3 35.1 20.7	PPM HC 52.7 54.9 53.3 41.1 41.8 41.1 47.3 46.6 55.6 55.6 55.6 55.6 55.6 55.6 55.6	PERCENT O2 0.81 0.83 0.82 3.81 3.63 4.86 4.89 4.84 6.19 6.16 6.16 6.16 7.42 7.35 7.34 8.63 8.68 8.63 9.49 9.49 9.49 9.48 10.15	A1 + 4 SCFM 37.5 37.5 37.6 42.1 42 42.3 44.8 44.3 44.3 44.3 44.3 47.3 47.3 47.3 50.3 51 50.9 55.1 55.2 55.5 560.2 50.7 59.9 63.2	A2 [NOX g/Hp/Hr 4.05 4.04 4.06 5.38 5.37 4.47 4.41 4.82 1.77 1.81 1.75 1.22 1.30 1.31 0.47 0.47 0.47 0.47 0.27 0.26 0.18	HC g/Hp/Hr 0.26 0.27 0.28 0.22 0.22 0.22 0.27 0.27 0.27 0.27 0.27
TEST ACA-2 ACA-1 ACA-3 ACB-2 ACB-3 ACB-1 ACC-1 ACC-1 ACC-3 ACC-2 ACD-2 ACD-2 ACD-2 ACD-2 ACD-1 ACD-3 ACE-3 ACE-3 ACE-1 ACF-1 ACF-3 ACF-1 ACG-2 ACG-3 ACG-1 ACC-1 ACC-1 ACC-1 ACC-1 ACC-1 ACC-1 ACC-1 ACC-1 ACC-1 ACC-1 ACC-2 ACC-2 ACC-2 ACC-2 ACC-2 ACC-2 ACC-2 ACC-2 ACC-2 ACC-2 ACC-2 ACC-1 ACC-2 ACC-3 ACC-2 ACC-3 ACC-2 ACC-3 ACC-2 ACC-3 ACC-2 ACC-3 ACC-2 ACC-3 ACC-3 ACC-2 ACC-3 A	OIL. TEMP 212 219 212 210 210 210 200 200 200 200 200 200	H20 TEMP 172 174 174 174 172 172 173 173 173 173 173 173 173 173 173 173	PPM NOX 827.5 824.7 827.6 999.5 999.5 775.1 773.3 802.7 292.5 300.7 288.5 180.9 200.2 200.7 67.9 66.8 66.1 34.9 34.3 35.1 20.7 20.6	PPM HC 52.7 54.9 53.3 41.1 41.8 41.1 47.3 46.6 46.9 55.6 55.6 55.6 55.6 55.6 55.6 55.6 5	PERCENT O2 0.81 0.83 0.82 3.81 3.68 3.63 4.86 4.89 4.84 6.19 6.16 6.16 6.16 6.16 7.42 7.35 7.34 8.63 8.68 8.63 9.49 9.49 9.49 9.49 9.49 9.49 10.15 10.15	A1 + 4 SCFM 37.5 37.5 37.6 42.1 42 42.3 44.8 44.3 44.3 44.3 44.3 47.3 47.3 47.3 50.3 51 50.9 55.1 55.2 55.5 50.9 55.1 55.2 50.7 59.9 63.2 50.7	A2 [NOX g/Hp/Hr 4.05 4.04 4.06 5.38 5.37 4.47 4.41 4.82 1.77 1.81 1.75 1.22 1.30 1.31 0.47 0.47 0.47 0.27 0.26 0.27 0.18 0.17	HC g/Hp/Hr 0.26 0.27 0.28 0.22 0.22 0.22 0.27 0.27 0.27 0.27 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34

In Test 3 at stoichiometric, the NO_X is again beyond the limit of the measurement instrumentation. At an equivalence ratio of 0.95 (slightly lean) the NO_X falls sharply. The NO_X continues to fall as the equivalence ratio is reduced to a value of 0.625, where the test was terminated. The test was 5 terminated because the engine again appeared to be missing and was apparently beyond the drivable limits.

		TEST	4.28% H	YDRO	GEN AND 7	2% Natu	ral Ga	as	
TEST	A/F	FUEL %	EQUIV	RPM	нр	ME	BTI TIM	DC IING	IORQUE
ADA-3	15.3	28.1	1.1791	1701	16.8	22	36	:	52
ADA-2	15.4	28.2	1.1714	1700	16.9	22	36	:	52.1
ADA-1	15.5	28	1.1639	1703	16.8	22	36	:	51.9
ADB-3	16.6	28.1	1.0887	1699	17	22	38	1	52.6
ADB-1	16.7	28.1	1.0802	1702	17	22	38		52.4
ADB-2	16.7	28.2	1.0802	1702	17	22	38		52.5
ADC-1	17.7	28	1.0192	1702	17.2	23	39		53.1
ADC-3	17.7	28.1	1.0192	1703	17.1	22	39	-	52.6
ADC-2	18	28.2	1.0022	1699	17.3	23	39		53.4
ADD-2	19.1	28.2	0.9445	1702	16.9	22	39		52.5
ADD-1	19.0	28.3	0.9204	1702	10.8	22	39	-	52 52 A
ADD-3	21.5	20.2	0.9101	1703	17	22	41		52.4
ADE-1	21.5	28.5	0.8313	1700	17	22	41		52.6
ADE-2	21.8	28.4	0.8275	1703	17.2	23	41		53
ADF-2	23	28.5	0.7843	1703	17.1	22	50	-	52.6
ADF-3	23.1	28.4	0.781	1702	17	22	50	-	52.6
ADF-1	23.2	28.4	0.7776	1703	17.1	22	50	-	52.6
ADG-2	24.8	28.5	0.7274	1700	17	22	52	5	52.5
ADG-3	24.9	28.5	0.7245	1701	17.1	22	52	5	52.6
ADG-1	25.2	28.5	0.7159	1703	17	22	52	5	52.3
ADH-3	26.7	28.5	0.6757	1701	17.1	22	54	4	52.7
ADH-2	26.8	28.4	0.6731	1701	17	22	54	5	52.6
ADH-1	27.3	28.5	0.6608	1703	17.2	23	54	5	53
ADI-1	28.3	28.5	0.6375	1701	17	22	58	5	52.6
ADI-3	28.4	28.5	0.6352	1698	16.8	22	58		52.4
ADI-2	28.7 AVE	28.5	0.6286	1699	17	22	58	-	52.5
	A12	28.3%							
		28.5%	DDM		DEDOTAT			NOV	
TEST	OIL TEMP	H2O TEMP	PPM NOX	PPM HC	PERCENT O2	A1 + . SCFM	A2 [NOX g/Hp/Hr	HC g/Hp/Hr
TEST ADA-3	OIL TEMP 209	173	PPM NOX 999	РРМ НС 52.3	PERCENT O2 0.9	A1 + . SCFM 38	A2 I	NOX g/Hp/Hr 5.01	HC g/Hp/Hr 0.26
TEST ADA-3 ADA-2	OIL TEMP 209 209	173 172	PPM NOX 9999 9999	PPM HC 52.3 52.7	PERCENT O2 0.9 0.89	A1 + , SCFM 38 37.8	A2 I	NOX g/Hp/Hr 5.01 4.95	HC g/Hp/Hr 0.26 0.26
TEST ADA-3 ADA-2 ADA-1	OIL TEMP 209 209 210	173 172 173	PPM NOX 9999 9999	PPM HC 52.3 52.7 54.6	PERCENT O2 0.9 0.89 0.88	A1 + . SCFM 38 37.8 37.8	A2 I	NOX g/Hp/Hr 5.01 4.95 4.96	HC g/Hp/Hr 0.26 0.26 0.27
TEST ADA-3 ADA-2 ADA-1 ADB-3	OIL TEMP 209 209 210 209	H20 TEMP 173 172 173 172	PPM NOX 999 999 999	PPM HC 52.3 52.7 54.6 34.7	PERCENT O2 0.9 0.89 0.88 2.06 2.01	A1 + , SCFM 38 37.8 37.8 39	A2 I	NOX g/Hp/Hr 5.01 4.95 4.96 5.06	HC g/Hp/Hr 0.26 0.26 0.27 0.18 0.12
TEST ADA-3 ADA-2 ADA-1 ADB-3 ADB-1	OIL TEMP 209 209 210 209 210 209 210	H20 TEMP 173 172 173 172 173 172	PPM NOX 999 999 999 999 999	PPM HC 52.3 52.7 54.6 34.7 34.8 24.6	PERCENT O2 0.9 0.89 0.88 2.06 2.01 2.04	A1 + . SCFM 38 37.8 37.8 39 39.3 20.2	A2 I	NOX g/Hp/Hr 5.01 4.95 4.96 5.06 5.09	HC g/Hp/Hr 0.26 0.26 0.27 0.18 0.18
TEST ADA-3 ADA-2 ADA-1 ADB-3 ADB-1 ADB-1 ADB-2	OIL TEMP 209 209 210 209 210 209 210 211 209	H2O TEMP 173 172 173 172 173 172 173 171 172	PPM NOX 9999 9999 9999 9999 9999 9999 9999	PPM HC 52.3 52.7 54.6 34.7 34.8 34.6 35.2	PERCENT O2 0.9 0.89 0.88 2.06 2.01 2.04 3.58	A1 + . SCFM 38 37.8 37.8 39.3 39.3 39.3 41.7	A2 I	NOX g/Hp/Hr 5.01 4.95 4.96 5.06 5.09 5.09 5.09 5.33	HC g/Hp/Hr 0.26 0.26 0.27 0.18 0.18 0.19
TEST ADA-3 ADA-2 ADA-1 ADB-3 ADB-1 ADB-1 ADB-2 ADC-1 ADC-3	OIL TEMP 209 209 210 209 210 211 209 209	H2O TEMP 173 172 173 172 173 171 172 171 172 174	PPM NOX 9999 9999 9999 9999 9999 9999 9999	PPM HC 52.3 52.7 54.6 34.7 34.8 34.6 35.2 36.8	PERCENT O2 0.9 0.89 0.88 2.06 2.01 2.04 3.58 3.38	A1 + . SCFM 38 37.8 37.8 39.3 39.3 39.3 41.7 41.7	A2 I	NOX g/Hp/Hr 5.01 4.95 4.96 5.06 5.09 5.09 5.33 5.36	HC g/Hp/Hr 0.26 0.26 0.27 0.18 0.18 0.19 0.20
TEST ADA-3 ADA-2 ADA-1 ADB-3 ADB-1 ADB-2 ADC-1 ADC-1 ADC-3 ADC-2	OIL TEMP 209 209 210 209 210 211 209 209 209 207	H20 TEMP 173 172 173 172 173 172 173 171 172 174 174	PPM NOX 999 999 999 999 999 999 999 999 999 9	PPM HC 52.3 52.7 54.6 34.7 34.8 34.6 35.2 36.8 35.7	PERCENT O2 0.9 0.89 0.88 2.06 2.01 2.04 3.58 3.38 3.36	A1 + . SCFM 38 37.8 37.8 39 39.3 39.3 41.7 41.7 41.9	A2 I	NOX g/Hp/Hr 5.01 4.95 4.96 5.06 5.09 5.09 5.33 5.36 5.32	HC g/Hp/Hr 0.26 0.27 0.18 0.18 0.18 0.18 0.19 0.20 0.19
TEST ADA-3 ADA-2 ADA-1 ADB-3 ADB-1 ADB-1 ADB-2 ADC-1 ADC-1 ADC-2 ADD-2	OIL TEMP 209 209 210 209 210 211 209 209 207 207	H2O TEMP 173 172 173 172 173 171 172 174 174 174	PPM NOX 999 999 999 999 999 999 999 999 999 9	PPM HC 52.3 52.7 54.6 34.7 34.8 34.6 35.2 36.8 35.7 40.6	PERCENT O2 0.9 0.89 0.88 2.06 2.01 2.04 3.58 3.38 3.36 5	A1 + . SCFM 38 37.8 37.8 39 39.3 39.3 41.7 41.7 41.9 44	A2 [NOX g/Hp/Hr 5.01 4.95 5.06 5.09 5.09 5.09 5.33 5.36 5.32 5.32 3.33	HC g/Hp/Hr 0.26 0.26 0.27 0.18 0.18 0.18 0.18 0.19 0.20 0.19 0.23
TEST ADA-3 ADA-2 ADA-1 ADB-3 ADB-1 ADB-2 ADC-1 ADC-3 ADC-2 ADD-2 ADD-1	OIL TEMP 209 209 210 209 210 211 209 209 207 207 207 208	H2O TEMP 173 172 173 172 173 171 172 174 174 174 173 173	PPM NOX 9999 9999 9999 9999 9999 9999 9999	PPM HC 52.3 52.7 54.6 34.7 34.8 34.6 35.2 36.8 35.7 40.6 40.7	PERCENT O2 0.9 0.89 0.88 2.06 2.01 2.04 3.58 3.38 3.36 5 5.01	A1 + . SCFM 38 37.8 37.8 39.3 39.3 39.3 41.7 41.7 41.7 41.4 44.4	A2 [NOX g/Hp/Hr 5.01 4.95 5.06 5.09 5.09 5.09 5.09 5.09 5.33 5.36 5.32 3.33 3.33	HC g/Hp/Hr 0.26 0.27 0.18 0.18 0.18 0.19 0.20 0.19 0.23 0.24
TEST ADA-3 ADA-2 ADA-1 ADB-3 ADB-1 ADB-2 ADC-1 ADC-3 ADC-2 ADD-1 ADD-1 ADD-3	OIL TEMP 209 209 210 209 210 211 209 209 207 207 207 208 207	H20 TEMP 173 172 173 172 173 172 173 171 172 174 174 173 173 173 173	PPM NOX 9999 9999 9999 9999 9999 9999 9999	PPM HC 52.3 52.7 54.6 34.7 34.8 34.6 35.2 36.8 35.7 40.6 40.7 41.7	PERCENT O2 0.9 0.89 0.88 2.06 2.01 2.04 3.58 3.58 3.38 3.36 5 5.01 5	A1 + . SCFM 38 37.8 37.8 39.3 39.3 39.3 41.7 41.7 41.7 41.9 44 44.4	A2 I	NOX g/Hp/Hr 5.01 4.95 5.06 5.09 5.09 5.09 5.33 5.36 5.32 3.33 3.36 3.30	HC g/Hp/Hr 0.26 0.27 0.18 0.18 0.19 0.20 0.19 0.20 0.19 0.20 0.19 0.23 0.24 0.24
TEST ADA-3 ADA-2 ADA-1 ADB-3 ADB-1 ADB-1 ADC-3 ADC-2 ADD-2 ADD-2 ADD-3 ADD-3 ADE-3	OIL TEMP 209 209 210 209 210 211 209 209 207 207 207 208 207 208	H20 TEMP 173 172 173 172 173 172 173 171 172 174 174 173 171 172	PPM NOX 9999 9999 9999 9999 9999 9999 9999	PPM HC 52.3 52.7 54.6 34.7 34.8 34.6 35.2 36.8 35.7 40.6 40.7 41.7 53	PERCENT O2 0.9 0.89 0.88 2.06 2.01 2.04 3.58 3.58 3.58 3.38 3.36 5 5.01 5 6.54	A1 + . SCFM 38 37.8 39 39.3 39.3 41.7 41.7 41.7 41.9 44 44.4 44.7 48.6	A2 I	NOX g/Hp/Hr 5.01 4.95 5.09 5.09 5.33 5.36 5.32 3.33 3.36 3.30 1.57	HC g/Hp/Hr 0.26 0.27 0.18 0.18 0.18 0.19 0.20 0.19 0.20 0.19 0.23 0.24 0.24 0.24 0.33
TEST ADA-3 ADA-2 ADA-1 ADB-3 ADB-1 ADC-3 ADC-3 ADC-2 ADD-2 ADD-2 ADD-1 ADD-3 ADD-3 ADE-3 ADE-1	OIL TEMP 209 209 210 210 211 209 207 207 207 207 208 207 208 207 204 203	173 172 173 172 173 172 173 172 173 171 172 174 174 174 173 171 172 171	PPM NOX 9999 9999 9999 9999 9999 9999 9999	PPM HC 52.3 52.7 54.6 34.7 34.8 34.6 35.2 36.8 35.7 40.6 40.7 41.7 53 53.2	PERCENT O2 0.9 0.89 0.88 2.06 2.01 2.04 3.58 3.38 3.38 3.38 5 5.01 5 6.54 6.54 6.57	A1 + . SCFM 38 37.8 39 39.3 39.3 41.7 41.7 41.9 44 44.4 44.7 48.6 48.6	A2 I	NOX g/Hp/Hr 4.95 5.06 5.09 5.33 5.36 5.32 3.33 3.36 3.30 1.57 1.59	HC g/Hp/Hr 0.26 0.27 0.18 0.18 0.18 0.18 0.19 0.20 0.19 0.23 0.24 0.24 0.24 0.33 0.33
TEST ADA-3 ADA-2 ADA-1 ADB-1 ADB-3 ADB-1 ADB-2 ADC-1 ADC-3 ADC-2 ADD-2 ADD-2 ADD-3 ADE-3 ADE-3 ADE-1 ADE-2 ADE-2	OIL TEMP 209 209 210 209 210 211 209 209 209 209 207 207 207 208 207 204 203 205	H20 TEMP 173 172 173 172 173 171 172 174 174 174 173 173 171 172 174	PPM NOX 9999 9999 9999 9999 9999 9999 9999	PPM HC 52.3 52.7 54.6 34.7 34.8 34.6 35.2 36.8 35.7 40.6 40.7 41.7 53 53.2 52.3	PERCENT O2 0.9 0.89 0.88 2.06 2.01 2.04 3.58 3.38 3.36 5 5 5.01 5 6.54 6.57 6.55	A1 + . SCFM 38 37.8 39.3 39.3 39.3 41.7 41.7 41.7 41.7 41.7 41.4 44.4 44.4	A2 [NOX g/Hp/Hr 4.95 5.06 5.09 5.33 5.36 5.32 3.33 3.36 3.30 1.57 1.59 1.58	HC g/Hp/Hr 0.26 0.27 0.18 0.18 0.18 0.18 0.19 0.20 0.19 0.23 0.24 0.24 0.23 0.24 0.33 0.33 0.32
TEST ADA-3 ADA-2 ADA-1 ADB-3 ADB-1 ADB-2 ADC-1 ADC-3 ADC-2 ADD-2 ADD-2 ADD-3 ADE-3 ADE-3 ADE-3 ADE-2 ADF-2 ADF-2	OIL TEMP 209 209 210 209 210 211 209 209 207 207 207 207 208 207 204 203 205 202 202	H20 TEMP 173 172 173 172 173 172 173 171 172 174 174 174 173 173 171 172 171 171 171	PPM NOX 9999 9999 9999 9999 9999 9999 9999	PPM HC 52.3 52.7 54.6 34.7 34.8 34.6 35.2 36.8 35.7 40.6 40.7 41.7 53 53.2 52.3 62.6	PERCENT O2 0.9 0.89 0.88 2.06 2.01 2.04 3.58 3.38 3.36 5 5.01 5 6.54 6.57 6.55 7.53 7.53	A1 + . SCFM 38 37.8 39.3 39.3 41.7 41.7 41.7 41.7 41.7 41.4 44.4 44.4	A2 I	NOX g/Hp/Hr 5.01 4.95 5.09 5.09 5.33 5.36 5.32 5.33 3.33 3.36 3.30 1.57 1.59 1.58 1.36	HC g/Hp/Hr 0.26 0.27 0.18 0.18 0.18 0.19 0.20 0.19 0.23 0.24 0.24 0.24 0.24 0.33 0.32 0.32 0.41
TEST ADA-3 ADA-2 ADA-1 ADB-3 ADB-1 ADB-2 ADC-1 ADC-3 ADC-2 ADD-1 ADD-3 ADD-3 ADD-1 ADD-3 ADE-3 ADF-2 ADF-3 ADF-3 ADF-3	OIL TEMP 209 209 210 209 210 201 201 209 207 207 207 207 207 207 207 207 207 207	H20 TEMP 173 172 173 172 173 172 173 171 172 174 174 174 173 173 171 172 171 171 171 171 171	PPM NOX 9999 9999 9999 9999 9999 9999 9999	PPM HC 52.3 52.7 54.6 34.7 34.8 34.6 35.2 36.8 35.7 40.6 40.7 41.7 53 53.2 53.2 52.3 62.6 61.6	PERCENT O2 0.9 0.89 0.88 2.06 2.01 2.04 3.58 3.38 3.36 5 5.01 5 6.54 6.57 6.55 7.53 7.53 7.53 7.53	A1 + . SCFM 38 37.8 39 39.3 39.3 41.7 41.7 41.7 41.9 44 44.4 44.4 44.4 44.7 48.6 48.6 51.2 51.2 51.2	A2 I	NOX g/Hp/Hr 5.01 4.95 5.06 5.09 5.33 5.36 5.32 3.33 3.36 3.30 1.57 1.59 1.58 1.36 1.45 1.20	HC g/Hp/Hr 0.26 0.27 0.18 0.18 0.19 0.20 0.19 0.20 0.19 0.23 0.24 0.24 0.24 0.24 0.23 0.33 0.32 0.41 0.40
TEST ADA-3 ADA-2 ADA-1 ADB-3 ADB-1 ADB-3 ADC-1 ADC-3 ADC-1 ADC-2 ADC-2 ADC-2 ADC-2 ADC-2 ADC-3 ADC-3 ADC-3 ADC-3 ADC-3 ADC-3 ADC-3 ADC-3 ADC-3 ADC-3 ADC-3 ADC-3 ADC-3 ADC-1 ADC-3 A	OIL TEMP 209 209 210 209 210 209 209 207 207 207 208 207 208 207 208 207 204 203 205 202 203 205 202 203	H20 TEMP 173 172 173 172 173 172 173 171 172 174 174 174 173 171 172 171 171 171 171 171 172 171	PPM NOX 9999 9999 9999 9999 9999 9999 9999	PPM HC 52.3 52.7 54.6 34.7 34.8 35.2 36.8 35.2 36.8 35.2 36.8 35.2 36.8 35.2 36.2 40.7 41.7 53.2 52.3 62.6 61.6 61.1	PERCENT O2 0.9 0.89 0.88 2.06 2.01 2.04 3.58 3.38 3.36 5 5.01 5 6.54 6.57 6.55 7.53 7.53 7.52 8 50	A1 + . SCFM 38 37.8 39 39.3 39.3 39.3 39.3 41.7 41.7 41.7 41.9 44 44.4 44.7 48.6 48.6 51.2 51.4 51.6 551	A2 I	NOX g/Hp/Hr 5.01 4.95 5.06 5.09 5.33 5.36 5.32 3.33 3.36 3.30 1.57 1.59 1.58 1.36 1.45 1.39 0.52	HC g/Hp/Hr 0.26 0.27 0.18 0.18 0.19 0.20 0.19 0.20 0.19 0.20 0.19 0.20 0.24 0.24 0.24 0.24 0.24 0.24 0.33 0.32 0.41 0.40 0.40 0.40 0.51
TEST ADA-3 ADA-2 ADA-1 ADB-3 ADB-1 ADB-1 ADD-1 ADD-1 ADD-2 ADD-2 ADD-2 ADD-2 ADD-2 ADD-2 ADD-3 ADE-1 ADE-3 ADF-1 ADF-1 ADF-1 ADF-1 ADF-1 ADF-3 ADF-1	OIL TEMP 209 209 210 209 210 209 209 209 209 207 207 208 207 208 207 208 207 204 203 205 202 202 203 202 209 209 209 209 209 209 210 209 210 209 209 210 209 209 210 209 209 210 209 209 210 209 209 209 209 210 209 209 209 209 209 209 209 209 209 20	H20 TEMP 173 172 173 172 173 172 173 172 173 172 174 174 174 173 171 172 171 171 171 172 171 171 172 172	PPM NOX 9999 9999 9999 9999 9999 9999 9999	PPM HC 52.3 52.7 54.6 34.7 34.8 35.2 36.8 35.7 40.6 40.7 41.7 53.2 52.3 62.6 61.6 61.1 72.4	PERCENT O2 0.9 0.89 0.88 2.06 2.01 2.04 3.58 3.58 3.38 3.36 5 5.01 5 6.54 6.57 6.55 7.53 7.53 7.53 7.52 8.59 8.58	A1 + . SCFM 38 37.8 39 39.3 39.3 41.7 41.7 41.9 44 44.4 44.7 48.6 48.6 48.6 55.1 51.2 51.4 51.6 55.1 54.7	A2 I	NOX g/Hp/Hr 4.95 5.06 5.09 5.33 5.36 5.32 3.33 3.36 3.30 1.57 1.59 1.58 1.36 1.45 1.39 0.52	HC g/Hp/Hr 0.26 0.27 0.18 0.18 0.19 0.20 0.19 0.20 0.19 0.20 0.19 0.20 0.24 0.24 0.24 0.24 0.24 0.24 0.24
TEST ADA-3 ADA-2 ADA-1 ADB-1 ADB-3 ADB-1 ADB-2 ADC-1 ADC-3 ADC-2 ADD-2 ADD-2 ADD-3 ADE-3 ADF-1 ADF-1 ADG-2 ADG-3 ADG-3 ADG-3	OIL TEMP 209 209 210 209 210 211 209 207 207 208 207 207 208 207 207 208 207 204 203 205 202 203 202 202 203 209 209 210 209 210 209 210 209 210 209 210 209 210 209 210 209 210 209 210 209 210 209 210 209 210 209 210 209 210 209 210 209 210 209 210 209 210 209 209 210 209 209 210 209 209 210 209 209 210 209 209 210 209 209 209 209 209 209 209 209 209 20	H20 TEMP 173 172 173 172 173 172 173 171 172 174 174 174 174 173 173 171 172 174 174 175 171 172 171 171 172 171	PPM NOX 9999 9999 9999 9999 9999 9999 9999	PPM HC 52.3 52.7 54.6 34.7 34.8 35.2 36.8 35.7 40.6 40.7 41.7 53 53.2 52.3 62.6 61.6 61.1 72.4 71.1	PERCENT O2 0.9 0.89 0.88 2.06 2.01 2.04 3.58 3.38 3.36 5 5.01 5 6.54 6.57 6.55 7.53 7.53 7.52 8.59 8.58 8.56	A1 + . SCFM 38 37.8 39.3 39.3 39.3 41.7 41.7 41.7 41.7 41.7 41.7 41.4 44.4 44	A2 I	NOX g/Hp/Hr 4.95 5.06 5.09 5.33 5.36 5.32 3.33 3.36 3.30 1.57 1.59 1.58 1.36 1.45 1.39 0.52 0.53	HC g/Hp/Hr 0.26 0.27 0.18 0.18 0.18 0.19 0.20 0.19 0.20 0.19 0.23 0.24 0.24 0.24 0.33 0.32 0.33 0.32 0.40 0.40 0.40 0.40 0.51 0.49 0.50
TEST ADA-3 ADA-2 ADA-1 ADB-3 ADB-1 ADB-3 ADB-1 ADC-3 ADC-3 ADD-2 ADD-3 ADD-3 ADE-3 ADE-3 ADF-3 ADF-3 ADF-3 ADF-3 ADF-3 ADF-3 ADF-3 ADF-3 ADG-3 ADG-3 ADG-1 ADH-1	OIL TEMP 209 209 210 209 210 201 201 207 207 207 207 207 207 207 207 207 203 207 203 205 202 203 202 203 202 209 210 209 210 209 210 209 210 209 210 209 210 209 210 209 210 209 210 209 210 209 210 209 210 209 210 209 209 210 209 210 209 209 210 209 209 210 209 209 210 209 209 210 209 209 209 209 209 210 209 209 209 209 209 200 209 209 200 209 200 209 200 209 200 200	H20 TEMP 173 172 173 172 173 172 173 171 172 174 174 174 174 173 173 171 171 171 171 171 171 171 171	PPM NOX 9999 9999 9999 9999 9999 9999 9999	PPM HC 52.3 52.7 54.6 34.7 34.8 35.2 36.8 35.7 40.6 40.7 41.7 53 53.2 52.3 62.6 61.6 61.6 61.1 72.4 71.1 82.5	PERCENT O2 0.9 0.89 0.88 2.06 2.01 2.04 3.58 3.38 3.36 5 5.01 5 6.54 6.57 6.55 7.53 7.53 7.52 8.59 8.58 8.56 9.54	A1 + . SCFM 38 37.8 39.3 39.3 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.6 48.6 48.6 48.5 51.2 51.2 51.6 55.1 54.7 54.9 60	A2 I	NOX g/Hp/Hr 5.01 4.95 5.09 5.09 5.33 5.36 5.32 5.33 3.33 3.36 3.30 1.59 1.58 1.36 1.45 1.39 0.52 0.52 0.52 0.52	HC g/Hp/Hr 0.26 0.27 0.18 0.18 0.18 0.19 0.20 0.19 0.23 0.24 0.24 0.24 0.24 0.33 0.32 0.41 0.40 0.40 0.51 0.49 0.50 0.63
TEST ADA-3 ADA-2 ADA-1 ADB-3 ADB-1 ADB-2 ADC-1 ADC-3 ADC-2 ADD-1 ADD-3 ADD-3 ADD-3 ADE-1 ADD-3 ADF-3 ADF-2 ADF-3 ADF-3 ADG-2 ADG-3 ADG-1 ADG-1 ADH-2	OIL TEMP 209 209 210 209 210 201 209 207 208 207 207 208 207 207 208 207 204 203 205 202 202 202 202 202 202 202 200 209 209	H20 TEMP 173 172 173 172 173 172 173 172 173 171 172 174 174 174 173 173 171 171 171 171 171 171 171 171	PPM NOX 9999 9999 9999 9999 9999 9999 9999	PPM HC 52.3 52.7 54.6 34.7 34.8 35.2 36.8 35.7 40.6 40.7 41.7 53 53.2 52.3 62.6 61.6 61.1 72.4 71.4 71.4 71.4 71.4 82.5	PERCENT O2 0.9 0.89 0.88 2.06 2.01 2.04 3.58 3.38 3.36 5 5 5.01 5 6.54 6.55 7.53 7.53 7.53 7.52 8.59 8.58 8.56 9.54	A1 + . SCFM 38 37.8 39 39.3 39.3 39.3 41.7 41.7 41.7 41.7 41.7 41.7 41.4 44.4 44	A2 [NOX g/Hp/Hr 5.01 4.95 4.96 5.09 5.09 5.33 5.36 5.32 3.33 3.36 3.30 1.57 1.59 1.58 1.36 1.45 1.39 0.52 0.52 0.52 0.52 0.52 0.20	HC g/Hp/Hr 0.26 0.27 0.18 0.18 0.19 0.20 0.19 0.20 0.19 0.23 0.24 0.24 0.24 0.24 0.24 0.33 0.32 0.33 0.32 0.41 0.40 0.51 0.49 0.50 0.63
TEST ADA-3 ADA-2 ADA-1 ADB-3 ADB-1 ADB-1 ADD-3 ADC-1 ADC-3 ADC-2 ADD-1 ADD-3 ADC-2 ADD-1 ADD-3 ADE-3 ADF-3 ADF-2 ADF-3 ADF-1 ADF-1 ADG-3 ADG-1 ADG-2 ADG-1 ADG-1 ADG-2 ADG-1 ADG-2 ADG-1 ADG-2 ADG-1 ADG-2 ADG-1 ADG-2 ADG-1 ADG-2 ADG-1 ADG-1 ADG-3 ADG-1 ADG-3 ADG-1 ADG-3 ADG-1 ADG-3 ADG-1 ADG-3 ADG-1 ADG-3 ADG-3 ADG-1 ADG-3 ADG-3 ADG-1 ADG-3 ADG-3 ADG-3 ADG-3 ADG-3 ADG-2 ADG-3 A	OIL TEMP 209 209 210 209 210 209 209 207 209 207 207 207 207 207 207 207 207 207 207	H20 TEMP 173 172 173 172 173 172 173 172 173 172 174 174 174 174 173 173 171 172 171 171 171 171 171 171 171 172 171	PPM NOX 9999 9999 9999 9999 9999 9999 9999	PPM HC 52.3 52.7 54.6 34.7 34.8 35.2 36.8 35.2 36.8 35.2 36.8 35.2 36.4 40.7 41.7 53 2 53.2 52.3 62.6 61.6 61.1 72.4 71.4 71.1 82.5 83.1	PERCENT O2 0.9 0.89 0.88 2.06 2.01 2.04 3.58 3.38 3.36 5 5 5.01 5 6.54 6.57 6.55 7.53 7.53 7.53 7.53 7.53 8.59 8.58 8.56 9.54 9.55	A1 + . SCFM 38 37.8 39.3 39.3 39.3 41.7 41.7 41.7 41.9 44 44.4 44.4 44.7 48.6 48.6 51.2 51.4 51.2 51.4 51.2 51.4 55.1 54.7 54.9 60 60.1 60	A2 [NOX g/Hp/Hr 5.01 4.95 5.06 5.09 5.33 5.36 5.32 3.33 3.36 3.30 1.57 1.59 1.36 1.45 1.39 0.52 0.52 0.52 0.52 0.52 0.52 0.21 0.21	HC g/Hp/Hr 0.26 0.27 0.18 0.18 0.18 0.19 0.20 0.19 0.20 0.19 0.20 0.19 0.20 0.19 0.23 0.24 0.24 0.24 0.33 0.32 0.41 0.40 0.40 0.51 0.49 0.50 0.63 0.63 0.63
TEST ADA-3 ADA-2 ADA-1 ADB-3 ADB-1 ADB-3 ADB-1 ADD-2 ADD-1 ADD-2 ADD-2 ADD-2 ADD-2 ADD-2 ADD-3 ADE-3 ADF-3 ADF-1 ADF-3 ADF-1 ADG-2 ADG-3 ADG-1 ADG-1 ADH-3 ADH-1 ADH-1 ADH-1	OIL TEMP 209 209 210 209 210 209 209 207 207 207 207 208 207 208 207 208 207 204 203 205 202 202 202 200 201 198 200 199 198	H20 TEMP 173 172 173 172 173 172 173 172 173 172 174 174 174 174 175 171 171 171 171 171 171 171 171 171	PPM NOX 9999 9999 9999 9999 9999 9999 9999	PPM HC 52.3 52.7 54.6 34.7 34.8 35.2 36.8 35.2 36.8 35.2 36.8 35.7 40.6 40.7 41.7 53.2 52.3 62.6 61.6 61.1 72.4 71.4 71.4 83.1 182.5 83.1 104.1	PERCENT O2 0.9 0.89 0.88 2.06 2.01 2.04 3.58 3.38 3.36 5 5.01 5 6.54 6.55 7.53 7.53 7.53 7.53 7.53 7.53 7.52 8.59 8.58 8.56 9.54 9.55 10.27	A1 + . SCFM 38 37.8 39 39.3 39.3 39.3 39.3 41.7 41.7 41.7 41.9 44 44.4 44.7 48.6 48.6 55.1.2 51.4 51.6 55.1.2 51.4 51.6 55.1.2 51.4 51.6 60.6 60.6	A2 [NOX g/Hp/Hr 4.95 5.06 5.09 5.09 5.33 5.36 5.32 3.33 3.36 3.30 1.57 1.59 1.58 1.36 1.45 1.39 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52	HC g/Hp/Hr 0.26 0.27 0.18 0.18 0.19 0.20 0.19 0.20 0.19 0.20 0.19 0.20 0.19 0.20 0.24 0.24 0.24 0.24 0.24 0.24 0.24
TEST ADA-3 ADA-2 ADA-1 ADB-3 ADB-1 ADB-2 ADC-1 ADC-3 ADC-2 ADD-2 ADD-2 ADD-2 ADD-3 ADC-3 ADC-1 ADC-3 ADC-1 ADC-3 ADC-1 ADC-3 ADF-1 ADF-2 ADG-2 ADG-1 ADG-2 ADG-1 ADG-2 ADG-1 ADG-3 ADG-1 ADG-3 ADG-1 ADG-3 ADG-1 ADG-3 ADG-1 ADG-3 ADG-1 ADG-3 ADG-1 ADG-3 ADG-1 ADG-3 ADG-1 ADG-3 ADG-1 ADG-3 ADG-1 ADG-3 ADG-1 ADG-3 ADG-1 ADG-3 ADG-1 ADG-3 ADG-1 ADG-2 ADG-2 ADG-3 ADG-1 ADG-3 ADG-1 ADG-3 ADG-1 ADG-3 ADG-1 ADC-3 ADC-1 ADC-3 ADC-1 ADC-3 ADC-1 ADC-3 ADC-1 ADC-1 ADC-3 ADC-1 ADC-3 ADC-1 ADC-3 ADC-1 ADC-3 ADC-1 ADC-3 ADC-1 ADC-3 ADC-1 ADC-3 ADC-1 ADC-3 ADC-3 ADC-1 ADC-3 ADC-1 ADC-3 ADC-1 ADC-3 ADC-1 ADC-3 ADC-1 ADC-3 A	OIL TEMP 209 209 210 209 210 211 209 207 207 208 207 207 208 207 207 208 207 207 208 207 204 203 205 202 203 202 200 209 210 209 210 209 210 209 210 209 210 209 210 209 210 209 210 209 210 209 210 209 210 209 210 209 210 209 210 209 210 209 210 209 210 209 210 209 210 209 209 210 209 209 210 209 209 210 209 209 210 209 209 210 209 209 210 209 209 209 209 209 200 209 200 209 209	H20 TEMP 173 172 173 172 173 172 173 172 173 171 172 174 174 174 174 174 175 171 171 172 171 171 171 171 171 171 171	PPM NOX 9999 9999 9999 9999 9999 9999 9999	PPM HC 52.3 52.7 54.6 34.7 34.8 35.2 36.8 35.7 40.6 40.7 41.7 53 52.3 62.6 61.6 61.1 72.4 71.1 83.1 104.1 104.2	PERCENT O2 0.9 0.89 0.88 2.06 2.01 2.04 3.58 3.38 3.36 5 5.01 5 5.01 5 6.54 6.57 6.55 7.53 7.53 7.52 8.59 8.56 9.54 9.54 9.54 9.54 9.54 9.55 10.27 10.27	A1 + . SCFM 38 37.8 39.3 39.3 39.3 41.7 41.7 41.7 41.7 41.7 41.7 41.4 44.4 44	A2 [NOX g/Hp/Hr 4.95 5.06 5.09 5.33 5.36 5.32 3.33 3.36 5.32 3.33 1.57 1.59 1.58 1.36 1.45 1.39 0.52 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53	HC g/Hp/Hr 0.26 0.27 0.18 0.18 0.19 0.20 0.19 0.20 0.19 0.20 0.19 0.20 0.24 0.24 0.24 0.24 0.24 0.24 0.24

In Test 4, at stoichiometric, the NO_X is again beyond the limit of the measurement instrumentation and remained 65 beyond the limit of instrumentation at an equivalence ratio of 0.95. When the air to fuel ratio was leaned to an

equivalence of 0.87, the NO_{χ} dropped sharply. The test was again terminated at an equivalence ratio of approximately 0.625 where the NO_{χ} was measured to be approximately 16.5 ppm. The engine was again observed to be missing

although in cylinder pressure readings were not taken to confirm this fact. Notice that the hydrocarbons were found to be 104 ppm.

		TEST	5 36%	HYDR	OGEN	AND (4% Natural	Gas	
TEST	A/F	FUEL %	EQUI	V F	RPM	HP	MR	ETDC TIMING	TORQUE
AEA-1	16	35.9	1.147	5 1	704	16.9	22	35	52
AEA-3	16	38	1.1475	51	699	17.1	23	35	53
AEA-2	16.1	36	1.1404	4 1	1704	16.6	22	35	51.3
AEB-2	16.1	36	1.0144	4 1	204	17	22	37	52.4
AEB-1	18.5	36.1	0.9924	4 1	701	17	22	37	52.4
AEB-1	18.5	35.9	0.987	l 1	703	17	22	37	52.5
AEC-3	20	36	0.918	1	703	17	22	38	52.4
AEC-1	20.3	35.9	0.9044	i 1	706	16.9	22	38	52
AEC-2	20.5	35.9	0.8958	31	705	17.1	22	38	52.8
AED-3	22	36	0.834	5 1	704	17	22	43	52.5
AED-1	22.1	35.9	0.8303	3 1	702	17	22	43	52.4
AED-3	22.2	35.9	0.827	1	703	17	22	43	52.4
AEE-3	23.2	36	0.7914	¥ 1	705	17	22	44	52.5
AEE-2	23.3	36	0.788	1	705	17.1	22	44	52.6
AEE-1	23.4	35.9	0.7846	51	702	17	22	44	52.6
AEG-3	25	35.9	0.7344	ŧ 1	702	17	22	49	52.4
AEG-2	25.2	36	0.7286	5 1	703	17.1	22	49	52.6
AFG-1	25.5	359	0.72	· · ·	702	17	22	49	52.5
AEH-1	29.5	35.9	0.6224	1 1	707	17	22	50	52.1
AFH.2	29.5	35.9	0.6224		704	16.8	22	50	51.9
AEH-3	29.5	36	0.6224	 	703	17.2	22	50	529
	222.0	50	0.011	• •	,,05	1 /		20	52.5
	AVE	36.0%							
	AVE	36.0%							
TEST	OIL TEMP	36.0% H2O TEMP	PPM NOX	PPM HC	PERC O2	ENT	A1 + A2 SCFM	NOX g/Hp/Hr	HC g/Hp/Hr
TEST AEA-1	AVE OIL TEMP 213	36.0% H2O TEMP 174	PPM NOX 999	PPM HC 40.8	PER C O2 1.16	ENT	A1 + A2 SCFM 38	NOX g/Hp/Hr 4.97	HC g/Hp/Hr 0.20
TEST AEA-1 AEA-3	AVE OIL TEMP 213 213	36.0% H2O TEMP 174 173	PPM NOX 999 999	PPM HC 40.8 41.1	PERC O2 1.16 1.13	ENT	A1 + A2 SCFM 38 38.3	NOX g/Hp/Hr 4.97 4.95	HC g/Hp/Hr 0.20 0.20
TEST AEA-1 AEA-3 AEA-2	AVE OIL TEMP 213 213 211	36.0% H2O TEMP 174 173 174	PPM NOX 999 999 999	PPM HC 40.8 41.1 42.8	PERC O2 1.16 1.13 1.15	ENT	A1 + A2 SCFM 38 38.3 37.9	NOX g/Hp/Hr 4.97 4.95 5.04	HC g/Hp/Hr 0.20 0.20 0.12
TEST AEA-1 AEA-3 AEA-2 AEB-2	AVE OIL TEMP 213 213 211 207	36.0% H2O TEMP 174 173 174 174	PPM NOX 999 999 999 999	PPM HC 40.8 41.1 42.8 32.8	PERC O2 1.16 1.13 1.15 371	ENT	A1 + A2 SCFM 38 38.3 37.9 41.9	NOX g/Hp/Hr 4.97 4.95 5.04 5.41	HC g/Hp/Hr 0.20 0.20 0.12 0.16
TEST AEA-1 AEA-3 AEA-2 AEB-2 AEB-1	AVE OIL TEMP 213 213 211 207 208	36.0% H2O TEMP 174 173 174 174 174 174	PPM NOX 999 999 999 999 999 999	PPM HC 40.8 41.1 42.8 32.8 32.1	PERC O2 1.16 1.13 1.15 371 3.7	ENT	A1 + A2 SCFM 38 38.3 37.9 41.9 41.8	NOX g/Hp/Hr 4.97 4.95 5.04 5.41 5.39	HC g/Hp/Hr 0.20 0.20 0.12 0.16 0.17
TEST AEA-1 AEA-3 AEA-2 AEB-2 AEB-1 AEB-3	AVE OIL TEMP 213 213 211 207 208 207	36.0% H2O TEMP 174 173 174 174 174 174 174	PPM NOX 999 999 999 999 999 999 999	PPM HC 40.8 41.1 42.8 32.8 32.1 33.1	PERC O2 1.16 1.13 1.15 371 3.7 3.71	ENT	A1 + A2 SCFM 38 38.3 37.9 41.9 41.8 42.1	NOX g/Hp/Hr 4.97 5.04 5.41 5.39 5.43	HC g/Hp/Hr 0.20 0.20 0.12 0.16 0.17 0.18
TEST AEA-1 AEA-3 AEA-2 AEB-2 AEB-1 AEB-3 AEC-3	AVE OIL TEMP 213 213 211 207 208 207 206	36.0% H2O TEMP 174 173 174 174 174 174 173 172	PPM NOX 999 999 999 999 999 999 999 475.3	PPM HC 40.8 41.1 42.8 32.8 32.1 33.1 39.9	PERC O2 1.16 1.13 1.15 371 3.7 3.71 5.41	ENT	A1 + A2 SCFM 38 38.3 37.9 41.9 41.8 42.1 45.4	NOX g/Hp/Hr 4.97 4.95 5.04 5.41 5.39 5.43 2.77	HC g/Hp/Hr 0.20 0.20 0.12 0.16 0.17 0.18 0.23
TEST AEA-1 AEA-3 AEA-2 AEB-2 AEB-2 AEB-1 AEB-3 AEC-3 AEC-1	AVE OIL TEMP 213 213 211 207 208 207 206 206	36.0% H2O TEMP 174 173 174 174 174 174 173 172 173	PPM NOX 999 999 999 999 999 999 999 475.3 493.3	PPM HC 40.8 41.1 42.8 32.8 32.1 33.1 39.9 39.5	PERC O2 1.16 1.13 1.15 371 3.7 3.71 5.41 5.39	ENT	A1 + A2 SCFM 38 38.3 37.9 41.9 41.9 41.8 42.1 45.4 45.5	NOX g/Hp/Hr 4.97 4.95 5.04 5.41 5.49 5.43 2.77 2.90	HC g/Hp/Hr 0.20 0.20 0.12 0.16 0.17 0.18 0.23 0.23
TEST AEA-1 AEA-3 AEB-2 AEB-1 AEB-3 AEB-3 AEC-3 AEC-1 AEC-2	AVE OIL TEMP 213 213 211 207 207 206 206 206 205	36.0% H2O TEMP 174 173 174 174 174 174 174 173 172 173 172	PPM NOX 999 999 999 999 999 999 475.3 493.3 491.5	PPM HC 40.8 41.1 42.8 32.8 32.1 33.1 39.9 39.5 38.5	PERC O2 1.16 1.13 1.15 3.71 3.7 3.71 5.41 5.39 5.38	ENT	A1 + A2 SCFM 38 38.3 37.9 41.9 41.8 42.1 45.4 45.5 45.5	NOX g/Hp/Hr 4.97 5.04 5.41 5.39 5.43 2.77 2.90 2.85	HC g/Hp/Hr 0.20 0.20 0.12 0.16 0.17 0.18 0.23 0.23 0.22
TEST AEA-1 AEA-3 AEA-2 AEB-2 AEB-1 AEB-3 AEC-1 AEC-3 AEC-1 AEC-2 AED-3	AVE OIL TEMP 213 213 211 207 208 207 206 205 203	36.0% H2O TEMP 174 173 174 174 174 174 173 172 173 172 173	PPM NOX 999 999 999 999 999 999 475.3 493.3 491.5 385.1	PPM HC 40.8 41.1 42.8 32.8 32.1 33.1 39.9 39.5 38.5 50.8	PERC O2 1.16 1.13 1.15 3.71 3.71 3.71 5.41 5.39 5.38 6.7	ENT	A1 + A2 SCFM 38 38.3 37.9 41.9 41.8 42.1 45.4 45.5 45.5 48.9	NOX g/Hp/Hr 4.97 4.95 5.04 5.41 5.39 5.43 2.77 2.90 2.85 2.41	HC g/Hp/Hr 0.20 0.20 0.12 0.16 0.17 0.18 0.23 0.23 0.23 0.22 0.32
TEST AEA-1 AEA-3 AEB-2 AEB-1 AEB-3 AEC-3 AEC-1 AEC-3 AEC-1 AEC-2 AED-1	AVE OIL TEMP 213 213 211 207 208 207 208 207 206 206 205 203 203	36.0% H2O TEMP 174 173 174 174 174 174 173 172 173 172 173 172	PPM NOX 999 999 999 999 999 475.3 493.3 491.5 385.1 387.9	PPM HC 40.8 41.1 42.8 32.1 33.1 39.9 39.5 38.5 50.8 50.1	PERC O2 1.16 1.13 1.15 3.71 3.71 5.41 5.39 5.38 6.7 6.69	ENT	A1 + A2 SCFM 38 38.3 37.9 41.9 41.8 42.1 45.4 45.4 45.5 45.5 48.9 48.7	NOX g/Hp/Hr 4.97 5.04 5.41 5.39 5.43 2.77 2.90 2.85 2.41 2.42	HC g/Hp/Hr 0.20 0.12 0.16 0.17 0.18 0.23 0.23 0.23 0.23 0.22 0.32 0.31
TEST AEA-1 AEA-3 AEB-1 AEB-1 AEB-3 AEC-3 AEC-1 AEC-3 AEC-1 AEC-2 AED-3 AED-3	AVE OIL TEMP 213 213 213 207 207 208 207 206 206 206 206 206 203 203 203 203	36.0% H2O TEMP 174 174 174 174 174 174 173 172 173 172 173 172 173 172	PPM NOX 999 999 999 999 999 475.3 493.3 491.5 385.1 387.9 395.5	PPM HC 40.8 41.1 42.8 32.1 33.1 39.9 39.5 38.5 50.8 50.1 50.1	PERC O2 1.16 1.13 1.15 3.71 3.71 5.41 5.39 5.38 6.7 6.69 6.68	ENT	A1 + A2 SCFM 38 38.3 37.9 41.9 41.8 42.1 45.4 45.5 45.5 45.5 48.9 48.7 48.8	NOX g/Hp/Hr 4.97 4.95 5.04 5.41 5.39 5.43 2.77 2.90 2.85 2.41 2.42 2.47	HC g/Hp/Hr 0.20 0.12 0.16 0.17 0.18 0.23 0.23 0.23 0.23 0.22 0.31 0.31
TEST AEA-1 AEA-3 AEA-2 AEB-2 AEB-1 AED-3 AEC-1 AEC-2 AED-3 AED-1 AED-3 AED-1 AED-3	AVE OIL TEMP 213 213 211 207 208 207 208 207 206 205 203 203 203 203 204 201	36.0% H2O TEMP 174 173 174 174 174 174 173 172 173 172 173 172 173 172 171	PPM NOX 999 999 999 999 475.3 493.3 491.5 385.1 387.9 395.5 204.1	PPM HC 40.8 41.1 42.8 32.8 32.1 33.1 39.9 39.5 38.5 50.8 50.1 50.1 58.4	PERC O2 1.16 1.13 1.15 3.71 3.71 5.41 5.39 5.38 6.7 6.69 6.68 7.53	ENT	A1 + A2 SCFM 38 38.3 37.9 41.9 41.8 42.1 45.5 45.5 45.5 48.9 48.7 48.8 51.1	NOX g/Hp/Hr 4.97 4.95 5.04 5.41 5.39 5.43 2.77 2.90 2.85 2.41 2.42 2.47 1.33	HC g/Hp/Hr 0.20 0.20 0.12 0.16 0.17 0.18 0.23 0.23 0.22 0.32 0.31 0.31 0.38
TEST AEA-1 AEA-3 AEB-2 AEB-1 AEB-3 AEC-1 AEC-3 AEC-3 AEC-2 AED-3 AEC-1 AED-3 AEC-3 AEC-3 AEC-3 AED-3 AEC-3 AEC-3 AEC-1	AVE OIL TEMP 213 213 211 207 208 207 206 206 203 203 203 203 203 204 201 203	36.0% H2O TEMP 174 173 174 174 174 173 172 173 172 173 172 173 172 172 171 172	PPM NOX 999 999 999 999 999 999 999 999 999 9	PPM HC 40.8 41.1 42.8 32.8 32.1 33.1 39.9 39.5 38.5 50.8 50.1 50.1 58.4 58.2	PERC O2 1.16 1.13 1.15 3.71 3.71 5.41 5.39 5.38 6.7 6.69 6.69 7.53 754	ENT	A1 + A2 SCFM 38 38.38.3 37.9 41.9 41.9 41.8 42.1 45.4 45.5 45.5 48.9 48.7 48.8 51.1 51.2	NOX g/Hp/Hr 4.97 5.04 5.41 5.39 5.43 2.77 2.90 2.85 2.41 2.42 2.47 1.33 1.34	HC g/Hp/Hr 0.20 0.12 0.16 0.17 0.18 0.23 0.23 0.23 0.22 0.32 0.31 0.31 0.38 038
TEST AEA-1 AEA-3 AEA-2 AEB-2 AEB-1 AEB-3 AEC-1 AEC-3 AEC-1 AEC-3 AED-1 AED-3 AED-1 AED-3 AEE-3 AEE-1	AVE OIL TEMP 213 213 211 207 208 207 206 205 203 203 203 203 203 203 203	36.0% H2O TEMP 174 173 174 174 174 173 172 173 172 173 172 173 172 173 172 173 172 173 172 173 174 173 172 173	PPM NOX 999 999 999 999 999 999 999 999 475.3 493.3 491.5 385.1 387.9 395.5 204.1 206.7 202.6	PPM HC 40.8 41.1 42.8 32.8 32.1 33.1 39.9 39.5 38.5 50.8 50.1 50.1 58.4 58.2 58.4	PERC O2 1.16 1.13 1.15 371 3.7 3.71 5.41 5.38 6.7 6.69 6.68 7.53 754 7.54	ENT	A1 + A2 SCFM 38 38.3 37.9 41.9 41.8 42.1 45.4 45.5 45.5 48.9 48.7 48.8 51.1 51.2 51	NOX g/Hp/Hr 4.97 5.04 5.41 5.39 5.43 2.77 2.90 2.85 2.41 2.42 2.42 2.42 2.47 1.33 1.34 1.32	HC g/Hp/Hr 0.20 0.12 0.16 0.17 0.18 0.23 0.23 0.23 0.23 0.31 0.31 0.31 0.31 0.38 038 0.38
TEST AEA-1 AEA-3 AEA-2 AEB-2 AEB-2 AEB-1 AEB-3 AEC-3 AEC-1 AED-3 AEC-1 AED-3 AED-3 AED-3 AED-3 AEB-3 AEE-2 AEB-2 AEB-2 AEB-2 AEB-2 AEB-2 AEB-2 AEB-3	AVE OIL TEMP 213 213 211 207 208 207 206 206 205 203 203 203 204 201 203 203 203 200	36.0% H2O TEMP 174 173 174 174 174 174 173 172	PPM NOX 9999 9999 9999 9999 475.3 493.3 491.5 385.1 387.9 395.5 204.1 206.7 202.6 78.8	PPM HC 40.8 41.1 42.8 32.1 33.1 39.9 39.5 38.5 50.8 50.1 50.1 50.1 50.1 58.4 68	PERC O2 1.16 1.13 1.15 3.71 5.41 5.39 5.38 6.7 6.69 6.68 7.53 754 7.58 8.82	ENT	A1 + A2 SCFM 38 38.3 37.9 41.9 41.8 42.1 45.4 45.5 45.5 45.5 45.5 48.9 48.7 48.8 51.1 51.2 51 54.9	NOX g/Hp/Hr 4.97 5.04 5.41 5.39 5.43 2.77 2.90 2.85 2.41 2.42 2.47 1.33 1.34 1.32 0.55	HC g/Hp/Hr 0.20 0.20 0.12 0.16 0.17 0.18 0.23 0.23 0.23 0.23 0.23 0.31 0.31 0.31 0.38 0.38 0.38 0.48
TEST AEA-1 AEA-3 AEA-2 AEB-2 AEB-1 AEB-3 AEC-1 AEC-3 AEC-1 AEC-3 AEC-1 AEC-3 AED-3 AEC-3 AED-1 AEC-3 AEC-1 AEC-3 AEC-1 AEC-2 AED-1 AEC-3 AEC-1 AEC-2 AEC-2 AEC-1 AEC-2 AEC-1 AEC-2 AEC-1 AEC-2 AEC-1 AEC-2 AEC-1 AEC-2 AEC-1 AEC-2 AEC-1 AEC-2 AEC-1 AEC-2 AEC-1 AEC-2 AEC-1 AEC-2 AEC-1 AEC-2 AEC-1 AEC-2 AEC-1 AEC-1 AEC-2 AEC-1 AEC-2 AEC-1 AEC-2 AEC-1 AEC-2 AEC-1 AEC-2 AEC-1 AEC-2 AEC-1 AEC-2 AEC-1 AEC-2 AEC-1 AEC-2 AEC-1 AEC-2 AEC-1 AEC-2 AEC-1 AEC-2 AEC-1 AEC-2 AEC-1 AEC-2 AEC-1 AEC-2 AEC-1 AEC-2 AEC-1 AEC-2 AEC-1 AEC-2 AEC-1 AEC-2 AEC-1 A	AVE OIL TEMP 213 213 211 207 208 207 206 205 206 205 203 203 204 201 203 203 200 200 200	36.0% H2O TEMP 174 173 174 174 174 173 172 173 172 173 172 171 172 171 172 171 172 171 172 173 172 171 172 173 172	PPM NOX 999 999 999 999 475.3 493.3 491.5 385.1 385.1 385.1 387.9 395.5 204.1 206.7 202.6 78.8 77.7	PPM HC 40.8 41.1 42.8 32.1 33.1 39.9 39.5 38.5 50.8 50.1 50.1 50.1 50.1 50.1 50.1 50.4 68 67.4	PERC O2 1.16 1.13 1.15 3.71 5.41 5.39 5.38 6.7 6.69 6.68 7.53 754 7.54 7.54 7.58 8.82 8.62	ENT	A1 + A2 SCFM 38 38.3 37.9 41.9 41.8 42.1 45.4 45.5 45.5 45.5 45.5 48.9 48.7 48.8 51.1 51.2 51 54.9 54.8	NOX g/Hp/Hr 4.97 4.95 5.04 5.41 5.39 5.43 2.77 2.90 2.85 2.41 2.42 2.47 1.33 1.34 1.32 0.55 0.54	HC g/Hp/Hr 0.20 0.20 0.12 0.16 0.17 0.18 0.23 0.23 0.23 0.23 0.23 0.23 0.31 0.31 0.31 0.38 0.38 0.38 0.38 0.48 0.47
TEST AEA-1 AEA-2 AEB-2 AEB-2 AEB-1 AEB-3 AEC-1 AEC-2 AED-3 AEC-1 AEC-3 AED-1 AEC-3 AEB-1 AEC-3 AEB-1 AEG-3 AEG-1	AVE OIL TEMP 213 213 211 207 208 207 206 206 203 203 203 203 203 203 203 203 200 200	36.0% H2O TEMP 174 173 174 174 174 174 173 172 173 172 173 172 173 172 173 172 171 172 173 172 171 172 173 172	PPM NOX 9999 9999 9999 475.3 493.3 491.5 385.1 387.9 395.5 204.1 206.7 202.6 78.8 77.7 76.9	PPM HC 40.8 41.1 42.8 32.8 32.1 33.1 39.9 39.5 38.5 50.8 50.1 50.1 58.4 58.4 58.4 58.2 58.4 67.4 68.4	PERC O2 1.16 1.13 1.15 3.71 3.71 5.39 5.38 6.7 6.69 7.53 754 7.58 8.82 8.62 8.85	ENT	A1 + A2 SCFM 38 38.3 37.9 41.9 41.8 42.1 45.5 48.9 48.7 48.8 51.1 51.2 51 54.9 54.8 54.9	NOX g/Hp/Hr 4.97 4.95 5.04 5.41 5.39 5.43 2.77 2.90 2.85 2.41 2.42 2.47 1.33 1.34 1.32 0.55 0.54 0.54	HC g/Hp/Hr 0.20 0.20 0.12 0.16 0.17 0.18 0.23 0.23 0.22 0.32 0.31 0.31 0.31 0.38 0.38 0.38 0.38 0.48
TEST AEA-1 AEA-3 AEA-2 AEB-2 AEB-1 AEB-3 AEC-3 AEC-1 AEC-3 AEC-1 AEC-3 AED-1 AEC-3 AED-1 AEC-3 AEC-1 AEC-3 AEC-1 AEC-3 AEC-1 AEC-3 AEC-1 AEC-3 AEC-1 AEC-3 AEC-1 AEC-3 AEC-1 AEC-3 AEC-3 AEC-1 AEC-3 AEC-1 AEC-3 AEC-1 AEC-3 AEC-1 AEC-3 AEC-1 AEC-3 AEC-1 AEC-3 AEC-3 AEC-1 AEC-3 A	AVE OIL TEMP 213 213 211 207 208 207 208 207 208 207 208 207 208 207 208 203 203 203 203 203 203 203 203 200 200	36.0% H2O TEMP 174 173 174 174 174 174 173 172 173 172 173 172 173 172 173 172 173 172 173 172 173 172 173 172 173 172 173 172 173 172 173 172 173 172 173 172 173 174 175 175 175 175 175 175 175 175	PPM NOX 999 999 999 999 999 999 999 999 999 9	PPM HC 40.8 41.1 42.8 32.1 33.1 39.5 50.8 50.1 50.1 50.1 50.1 50.4 58.4 58.4 68.4 68.4 (105.5	PERC O2 1.16 1.13 1.15 3.71 3.71 5.41 5.39 5.38 6.7 6.69 6.68 7.53 754 7.58 8.82 8.82 8.82 8.85 10.63	ENT	A1 + A2 SCFM 38 38.3 37.9 41.9 41.8 42.1 45.4 45.5 45.5 45.5 48.9 48.7 48.8 51.1 51.2 51 54.9 54.9 54.8 54.9 64.8	NOX g/Hp/Hr 4.97 5.04 5.41 5.39 5.43 2.77 2.90 2.85 2.41 2.42 2.42 2.42 1.33 1.34 1.32 0.55 0.54 0.10	HC g/Hp/Hr 0.20 0.20 0.12 0.16 0.17 0.18 0.23 0.23 0.23 0.23 0.31 0.31 0.31 0.38 0.38 0.38 0.38 0.48 0.47 0.48 0.87
TEST AEA-1 AEA-3 AEA-2 AEB-2 AEB-1 AEB-3 AEC-3 AEC-1 AEC-3 AEC-1 AEC-3 AEC-1 AED-3 AED-3 AED-3 AED-3 AED-3 AED-3 AED-3 AED-3 AED-3 AEC-2 AEG-3 AEG-2 AEG-1 AEG-1 AEG-1 AEG-1 AEG-1 AEG-1 AEG-1 AEG-1 AEG-1 AEG-1 AEG-1 AEG-1 AEG-1 AEG-1 AEG-1 AEG-1 AEG-1 AEG-2 AEG-1 AEG-3 AEG-2 AEG-3 AEC-1 AEC-3 AEC-1 AEC-3 AEC-1 AEC-3 AEC-1 AEC-3 AEC-1 AEC-3 AEC-1 AEC-3 AEC-1 AEC-3 AEC-1 AEC-3 AEC-1 AEC-3 AEC-1 AEC-3 AEC-1 AEC-3 AEC-3 AEC-1 AEC-3 AEC-1 AEC-3 AEC-3 AEC-1 AEC-3 AEC-3 AEC-1 AEC-3 AEC-3 AEC-1 AEC-3 A	AVE OIL TEMP 213 213 211 207 208 207 206 205 203 203 204 203 203 203 203 204 203 203 203 200 200 202 199 198	36.0% H2O TEMP 174 173 174 174 174 174 174 172 173 172 170 172	PPM NOX 999 999 999 999 999 999 999 999 999 9	PPM HC 40.8 41.1 42.8 32.8 32.1 33.1 39.9 39.5 50.8 50.1 50.1 58.4 58.2 68 67.4 68.4 68.4 68.4 05.5 104.1	PERC O2 1.16 1.13 1.15 3.71 3.7 3.71 5.41 5.39 5.38 6.7 6.69 6.68 7.53 7.53 7.54 8.82 8.82 8.82 8.85 10.63 10.64	ENT	A1 + A2 SCFM 38 38.3 37.9 41.9 41.8 42.1 45.4 45.5 45.5 45.5 45.5 48.9 48.7 48.8 51.1 51.2 51 54.9 54.8 54.9 54.8 54.9 64.8 65	NOX g/Hp/Hr 4.97 5.04 5.41 5.39 5.43 2.77 2.90 2.85 2.41 2.42 2.47 1.33 1.34 1.32 0.55 0.54 0.10 0.10	HC g/Hp/Hr 0.20 0.12 0.16 0.17 0.18 0.23 0.23 0.23 0.23 0.31 0.31 0.31 0.38 0.38 0.38 0.48 0.47 0.47 0.87

In Test 5at stoichiometric, the NO_X , levels were beyond the measurement limit of the instrumentation. The NO_X^{50} levels dropped sharply at an equivalence ratio of 0.91. The NO_X levels continue to fall to the termination of the test at approximately 0.625 equivalence ratio. The NO_X has a low value of approximately 12 ppm. The hydrocarbons have a maximum value of 105 ppm. This is approximately the same as the hydrocarbons measured during the 30% hydrogen testing. The test was terminated before there was a sharp rise in the hydrocarbons thus indicating that the roughness was not being caused by running the engine beyond the lean limit. 60

SUMMARY OF TESTS 1-5

The purpose of TESTS 1 through 5 was to determine if the lean limit of Natural Gas can he extended by introducing Hydrogen, H_2 . The hypothesis used was that the leaner the 65 engine could be run without going into lean misfire, the lower the NO_x would be while only incurring moderate

increases in the Hydro Carbons, HCs. HCs were not considered to be a significant problem since HCs can be reduced using catalysts.

FIGS. 1 through 20 show partial maps of the NO_x and hydrocarbon emissions at various levels of hydrogen in Natural Gas and at various equivalence ratios.

Both 28% hydrogen and 36% hydrogen mixtures yielded very low NO_x levels a to 0.625 equivalence ratio. See FIGS. 13-20. The extremely low NO_x levels of 28 ppm (0.21 gm/hp hr) and 12 ppm((0.10 gm/hp hr) respectively were unexpected. Recall that all of the emissions readings were taken at the exhaust manifold outlet. There were no emission control equipment on the tested engine and there was no catalytic converter. The levels of NO_x at 28% and 36% hydrogen mixtures were substantially below the strictest air quality standards. For example, current air quality standards in Japan require NO_x emissions to be below 200 ppm. This standard is extremely difficult to meet and has never been met without substantial emissions control equipment on the engine, based on the prior art known to the inventors.

Referring back to FIGS. 2 and 4 for 0% Hydrogen. Although at an equivalence ratio of 0.75 the NO_x level fell significantly the hydrocarbons increased at approximately the same rate thus indicating an unstable operating condition. This same result can be noted in FIGS. 6 and 8 (11% Hydrogen) and in FIGS. 10 and 12 (20% Hydrogen). However, the lean limit extends from approximately 0.75 equivalence ratio at 0% hydrogen to 0.67 equivalence ratio at 20% hydrogen. It is not feasible to operate the engine at these lean limits since a very small change in the air fuel 10 ratio will make a very significant increase in the NO_x levels or a very significant increase in the hydrocarbon levels. When the hydrogen concentration was extended to 28% there is no longer a point where the hydrocarbons abruptly increase as was seen at all lower levels of hydrogen thus 15 making lean burn a viable option. This same result was noted at concentrations of 36% hydrogen as seen in FIGS. 17 and 18.

The test results demonstrate that extremely low levels of NO_x are possible with acceptably moderate increases in ²⁰ unburned hydrocarbons using 28 % and 36% hydrogen supplementation. Previous research conducted at 20% hydrogen did not indicate a significant enough reduction to consider the mixture of hydrogen and natural gas as a viable solution to the problem of producing extremely low NO_x 25 levels of 20% and below. The significant reduction in NO_x was realized when the hydrogen level was raised to approximately 30% and the engine was run nearer the lean limit. In addition, the lean limit of combustion was significantly extended by the increased levels of hydrogen. The NO_v ³⁰ levels reported are an order of magnitude below the strictest current requirements. This level of NO_x was achieved without a catalytic converter or other emissions reducing hardware on the engine.

The tests and related data demonstrate that levels up to ³⁵ approximately 50% Hydrogen can be used with combustion engines. Over 50% Hydrogen gas in the mixture could create possible problems related to storage and safety. However, the specific mixture amounts of between approximately 21 and 50% Hydrogen, can be further narrowed down by ⁴⁰ engine size(4.6,8 cylinders) and regulatory concerns.

While natural gas has been referred to as including primarily methane, natural gas can include other components is much smaller amounts. Besides primarily containing methane, natural gas can include Carbon Dioxide.⁴⁵ Nitrogen, Ethane, Propane, Iso-Butane, N-Butane, Iso Pentane, N-Pentane, and Hexanes Plus.

While the tested engine did not use a catalytic converter, one could be added. The hydrocarbon levels at 28% and 36% hydrogen at an equivalence ratio of 0.625 were both approximately 104 ppm(0.84 gm/hp hr). Since approximately 15% of the hydrocarbons are photo reactive the total reactive hydrocarbons are approximately 16 ppm (0.13 gm/hp hr.). This level of hydrocarbon emissions is extremely low and there is the potential of reducing the total hydrocarbons to near zero through the use of a catalytic converter.

Mixtures of hydrogen and natural gas can be mixed by known methods such as but not limited to sonic mixing, or merely injecting hydrogen into natural gas, or injecting $_{60}$ natural gas into hydrogen.

While the alternative fuel mixture in this invention has been successfully used with existing combustion engines, modifications on existing engines can be accomplished in order to enhance engine performance such as horsepower. 65 For example, the alternative fuel disclosed herein can be used in combustion engines include but are not limited to

turbocharging, engine settings(ignition, sparkplugs), camshafts, intake manifold and cylinder head modifications, compression ratios, and injection system and combinations thereof.

While the invention has been described as being used for mobile vehicles such as an eight(8) cylinder automobiles, the invention would have applicability to various other size engines such as four(4), six(6), and twelve(12) cylinder mobile engines.

Furthermore, the disclosed invention can be used with other size engines such as but not limited to lawnmower engines. trucks, vans, aircraft and trains.

VARIABLE AIR/FUEL RATIO THROTTLE CONTROL

This portion of the invention covers a variable air/fuel ratio control that optimizes emissions and power output for lean burn applications. FIG. 21A and 21B is a Flow chart showing a preferred operation of the throttle control invention. FIG. 22 is a schematic diagram showing a preferred system control connections for using the throttle control invention. Before discussing these Figures, a background for this invention will now be discussed.

Test results have indicated that Spark Ignition(SI) engines can operate at an equivalence ratio of approximately 0.5 with approximately 35% by volume hydrogen in methane. The emissions during this test were NO_x of approximately 8 ppm and HC or approximately 845 ppm. This test was conducted on the engine previously discussed. Maximum engine horsepower was 93 at an equivalence ratio of approximately 0.625 while maximum horsepower was 24 at an equivalence ratio of 0.5. Thus, the optimum equivalence ratio is a function of desired emissions, and horsepower. Varying the equivalence ratio dynamically will provide a vehicle with needed horsepower while minimizing the emissions from the vehicle. The optimum equivalence ratio is thus a function of the percentage of hydrogen enrichment, selected NO_x (Noxious Oxide) and HC (Hydro Carbon) levels, engine design configuration(cylinder size, cylinder displacement, head dimensions, and the like) as well as desired power output

A system optimized for these parameters(hydrogen enrichment, NO_x , HC, engine design) will produce less power than could be produced if the engine were operated approximately at stoichiometric. With this system, the emission levels of NO_x , and controlled HC's will be on the order of approximately 25 ppm or less. In addition the CO output will be on the order of approximately 1% of less. These levels of emission would qualify the vehicle for ULVE(Ultra Low Vehicle Emission) status as established by the California Air Resources Board(CARB). The system for introducing fuel and air into the engine can utilize either a carburetion system or a fuel injection system as described previously in the background section of the invention. However, the prior art systems are still limited because additional power would be required for severe grade climbing, expressway merging and passing. In the prior art systems a wide open throttle could still cause the engine to not produce sufficient power for these extreme conditions. In the subject invention, the air/fuel ratio can be shifted during the wide open throttle toward stoichiometric. Thus, in the instant invention, the air/fuel ratio is shifted toward stoichiometric as a function of the instantaneous power demand.

The novel throttle control can use a "carburetor" or "fuel injection" system. For a carbureted system, a secondary demand regulator system can be operated in parallel with the

standard demand regulator system. The standard demand regulator system can be adjusted to maintain an optimal air/fuel ratio. When the throttle blades in the primary system are wide open the secondary system is activated. The secondary system supplies additional fuel to the system as a 5 function of the system demand and the throttle pedal position.

FIG. 21A and 21B is a Flow chart showing a preferred operation of the throttle control invention. In the injection system, the standard electronic control unit(ECU) such as 10 the control unit 10 of U.S. Pat. No. 4,730,590 to Sagawa, which is incorporated by reference, can be programed to implement the algorithm. Referring to FIG. 21. From Start, step 110 is to calculate engine speed(rpm) N, mass air flow Q, and mass fuel flow Fr Step 120 is to calculate throttle 15 a function of output emissions and engine power. position T_p, velocity of throttle position d T_p/dt, and acceleration of throttle position d^2T^{p}/dt^2 . Step 130 is calculate current emissions. Step 140 is calculate desired air fuel ratio AF_d which is a function of acceptable emission levels. desired vehicle speed and acceleration values computed 20 above. Step 150 is to calculate actual air fuel AF, which is calculated from Q and F, Step 160 is to calculate in-cylinder pressure C_{pr} , average in-cylinder pressure $\overline{C_{pr}}$, standard deviation of in-cylinder pressure σC_{pr} and Z value equal to

$$Re = \frac{|C_{pr} - C_{pr}|}{\sigma}$$

Step 200 of FIG. 21A goes to the top of FIG. 21B. Step 210 is to calculate δ which is equal to the desired air fuel, AF_d 30 matic has been described for use with a hydrogen gaseous minus actual air fuel, AF_a. Step 220 holds if $\delta=0$ and Z<1.0 at box 222 there is is no change go to step 100. If $\delta=0$ and Z>1.0 there is more cylinder pressure variation than is normally expected. Go to step 224 to increase Pw, the pulse width of the injector which will increase fuel, and set an 35 engine alarm, 226 which can be a warning dashboard light that the engine is malfunctioning and that the driver should check the engine. If $\delta < 0$, go to step 232 and increase Pw which will increase fuel to the engine and then go to step 100. If δ is not <0 go to step 240 and check Z. If Z <1 go 40 to step 242 and reduce the amount of fuel to the engine, lower Pw, and then go to step 100. If Z is not <1 go to step 250 reduce Pw and set engine alarm 260 that engine is malfunctioning and then go to step 100.

system of the control connections for using the throttle control algorithm of FIGS. 21A and 21B with the internal combustion engine 10 in a mobile vehicle. Air is inducted through the intake manifold 1 and the volume can be measured by sensor 2 whose output is sent to control unit 14 50 a computer that runs the algorithm flow chart depicted previously in FIGS. 21A and 21B. The position of the throttle blade can be determined by sensor 3. Sensor 3 can be configured such that when the throttle blade is fully open(parallel to intake air) the additional travel of the 55 throttle can occur to indicate an operator(drivers) desire for increased power. Component 4 can be the fuel injector whose Pw pulse width is controlled by control unit 14. As the pulse width to injector 4 is increased, the air fuel ratio (ϕ) can be increased. Component 5 is the mass fuel flow sensor 60 which also provides input for control unit 14. Component 6 is the emission sensor which can monitor NO_X , CO, CO_2 . THC, NMOG and O₂ passing into muffler 12. Sensor 7 is the engine 10 temperature sensor. Sensor 8 is the crank angle sensor used to determine engine 10 speed and which of the 65 includes: cylinder(s) is being fired. Sensor 9 is the in-cylinder pressure transducer for engine 10. For each cylinder of the engine,

there is a separate in-cylinder transducer 9. Control unit 14 can also control the fuel passing into injector 4 by fuel supply 16. The fuel supply 16 can store a high pressure mixture of natural $gas(CH_4)$ and $hydrogen(H_2)$ in a mixture as that described in relation to the discussion of FIGS. 1-20 previously. Alternatively, fuel supply 16 can store separate containers of natural gas(i.e. CH_4) and hydrogen(H₂). For example, CH₄ can be stored in one high pressure cylinder. For separate storage, hydrogen, H₂, can be stored either in a high pressure cylinder, in a hydride, or in a cryogenic form. Furthermore, the separately stored hydrogen could be generated on board the vehicle through a reforming process of CH_4 . When stored separately, the ratio of CH_4 and H_2 can be varied dynamically and controlled by control unit 14 as

The algorithm in our invention will maintain the air/fuel ratio at the optimum for emission while the engine power is under the control of the throttle. Experimentation indicates that many internal combustion engines will operate best at approximately ϕ =approximately 0.625. This however needs to be individually determined for each different engine configuration.

The entire system is under the control of the driver. The transition from the fixed air/fuel ratio to the variable air/fuel 25 ratio can be automatic where the driver is unaware of the change. Alternatively, the system can require additional force on the throttle pedal to alert the driver that the vehicle is now being operated in less than the optimal range.

Although the control algorithm embodiment and schefuel, the invention would have applicability to other types of mobile vehicle fuels that can support an extreme lean burn condition.

While the invention has been described, disclosed, illustrated and shown in various terms of certain embodiments or modifications which it has presumed in practice, the scope of the invention is not intended to be, nor should it be deemed to be, limited thereby and such other modifications or embodiments as may be suggested by the teachings herein are particularly reserved especially as they fall within the breadth and scope of the claims here appended.

We claim:

1. A control system for varying air and fuel ratios of an internal combustion engines running at lean burn with FIG. 22 is a schematic diagram showing a preferred 45 reduced emissions during cycles for instantaneous power demands comprising:

- an internal combustion engine of a mobile vehicle operating on a fuel supply having a mixture of hydrogen and natural gas:
- an air fuel control for maintaining fuel supplied to the engine to remain at a selected air fuel ratio to achieve a lean burn condition:
- a throttle for controlling the amount of fuel being supplied to the engine, the throttle having a closed position through a fully open position;
- a sensor activated by the fully open position of the throttle, wherein the activated sensor causes the air fuel control to increase the percentage of fuel in the selected air fuel ratio; and
- means for dynamically adjusting mixture ratios of the hydrogen gas and the natural gas supplied to the engine based on engine power and emission.

2. The control system of claim 1, wherein the fuel supply

a mixture of approximately 21 to 50% hydrogen gas and the remainder being natural gas.

3. The control system of claim 1, wherein the fuel supply includes:

a mixture of approximately 28 to 36% hydrogen gas and the remainder being natural gas.

4. The control system of claim 1, wherein the air-fuel 5 control includes:

a carburetor.

5. The control system of claim 1, wherein the air-fuel control includes:

a fuel injection control.

6. The control system of claim 1, where the selected air fuel ratio is controlled by:

engine speed, spark timing, air flow and throttle pedal position.

position. 15 7. The control system of claim 6, wherein the selected air fuel ratio is further controlled by at least one of:

in-cylinder pressure, exhaust emissions and fuel flow.

8. A method for producing lean burn and low emission rates for an internal combustion engine of a mobile vehicle 20 using a dynamically adjustable alternative fuel as compared to the burn and emission rates of gasoline fuel to achieve a lean burn, comprising the steps of:

feeding an alternative gaseous fuel mixture of above 21 to approximately 50% hydrogen gas and the remainder being natural gas to an internal combustion engine of a mobile vehicle;

- operating the air fuel ratio of the vehicle to achieve a lean burn condition without misfiring the engine; and
- means for dynamically adjusting mixture ratios of the hydrogen gas and the natural gas supplied to the engine based on engine power and emission.

9. A method for producing lean burn and low emission rates for an internal combustion engine of a mobile vehicle using a dynamically adjustable alternative fuel as compared to the burn and emission rates of gasoline fuel to achieve a lean burn condition, comprising the steps of:

- feeding an alternative gaseous fuel mixture of approximately 28 to approximately 36% hydrogen gas and the remainder being natural gas to an internal combustion engine of a mobile vehicle;
- operating the vehicle engine at an air and fuel equivalence ratio of approximately 0.625 to achieve a lean burn condition without misfiring the engine and
- means for dynamically adjusting mixture ratios of the hydrogen gas and the natural gas supplied to the engine based on engine power and emission.

* * * * *