955 research outputs found
Transport control by coherent zonal flows in the core/edge transitional regime
3D Braginskii turbulence simulations show that the energy flux in the
core/edge transition region of a tokamak is strongly modulated - locally and on
average - by radially propagating, nearly coherent sinusoidal or solitary zonal
flows. The flows are geodesic acoustic modes (GAM), which are primarily driven
by the Stringer-Winsor term. The flow amplitude together with the average
anomalous transport sensitively depend on the GAM frequency and on the magnetic
curvature acting on the flows, which could be influenced in a real tokamak,
e.g., by shaping the plasma cross section. The local modulation of the
turbulence by the flows and the excitation of the flows are due to wave-kinetic
effects, which have been studied for the first time in a turbulence simulation.Comment: 5 pages, 5 figures, submitted to PR
Fully electromagnetic nonlinear gyrokinetic equations for tokamak edge turbulence
An energy conserving set of the fully electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell's equations, which is applicable to both L-mode turbulence with large amplitude and H-mode turbulence in the presence of high E Χ B shear has been derived. The phase-space action variational Lie perturbation method ensures the preservation of the conservation laws of the underlying Vlasov-Maxwell system. Our generalized ordering takes ρ[sub ]i [\sub]<< ρϑ¡ ~ LE ~ Lp << R (here ρ[sub ]i [\sub] is the thermal ion Larmor radius and ρϑ¡ = [B over Bϑ] ρ[sub ]i [\sub]), as typically observed in the tokamak H-mode edge, with LE and Lp being the radial electric field and pressure gradient lengths. We take κ[sub ] perpendicular to[/sub] ρ[sub ]i [\sub] ~ 1 for generality, and keep the relative fluctuation amplitudes eδφ ⁄ Τ[sub ]i [\sub]~ δΒ ⁄ Β up to the second order. Extending the electrostatic theory in the presence of high E Χ B shear [Hahm, Phys. Plasmas 3, 4658 (1996)], contributions of electromagnetic fluctuations to the particle charge density and current are explicitly evaluated via pull-back transformation from the gyrocenter distribution function in the gyrokinetic Maxwell's equation
Transcription-translation coupling: direct interactions of RNA polymerase with ribosomes and ribosomal subunits.
In prokaryotes, RNA polymerase and ribosomes can bind concurrently to the same RNA transcript, leading to the functional coupling of transcription and translation. The interactions between RNA polymerase and ribosomes are crucial for the coordination of transcription with translation. Here, we report that RNA polymerase directly binds ribosomes and isolated large and small ribosomal subunits. RNA polymerase and ribosomes form a one-to-one complex with a micromolar dissociation constant. The formation of the complex is modulated by the conformational and functional states of RNA polymerase and the ribosome. The binding interface on the large ribosomal subunit is buried by the small subunit during protein synthesis, whereas that on the small subunit remains solvent-accessible. The RNA polymerase binding site on the ribosome includes that of the isolated small ribosomal subunit. This direct interaction between RNA polymerase and ribosomes may contribute to the coupling of transcription to translation
Transparent, flexible supercapacitors from nano-engineered carbon films
Here we construct mechanically flexible and optically transparent thin film solid state supercapacitors by assembling nano-engineered carbon electrodes, prepared in porous templates, with morphology of interconnected arrays of complex shapes and porosity. The highly textured graphitic films act as electrode and current collector and integrated with solid polymer electrolyte, function as thin film supercapacitors. The nanostructured electrode morphology and the conformal electrolyte packaging provide enough energy and power density for the devices in addition to excellent mechanical flexibility and optical transparency, making it a unique design in various power delivery applications
Composite Skyrme Model with Vector Mesons
We study the composite Skyrme model, proposed by Cheung and G\"{u}rsey,
introducing vector mesons in a chiral Lagrangian. We calculate the static
properties of baryons and compare with results obtained from models without
vector mesons.Comment: LaTeX, 9 pages, 3 figures, to be published in Phys. Rev.
Two-dimensional turbulence in magnetised plasmas
In an inhomogeneous magnetised plasma the transport of energy and particles
perpendicular to the magnetic field is in general mainly caused by quasi
two-dimensional turbulent fluid mixing. The physics of turbulence and structure
formation is of ubiquitous importance to every magnetically confined laboratory
plasma for experimental or industrial application. Specifically, high
temperature plasmas for fusion energy research are also dominated by the
properties of this turbulent transport. Self-organisation of turbulent vortices
to mesoscopic structures like zonal flows is related to the formation of
transport barriers that can significantly enhance the confinement of a fusion
plasma. This subject of great importance in research is rarely touched on in
introductory plasma physics or continuum dynamics courses. Here a brief
tutorial on 2D fluid and plasma turbulence is presented as an introduction to
the field, appropriate for inclusion in undergraduate and graduate courses.Comment: This is an author-created, un-copyedited version of an article
published in European Journal of Physics. IOP Publishing Ltd is not
responsible for any errors or omissions in this version of the manuscript or
any version derived from it. The definitive publisher authenticated version
is available online at doi: 10.1088/0143-0807/29/5/00
ELM triggering conditions for the integrated modeling of H-mode plasmas
Recent advances in the integrated modeling of ELMy H-mode plasmas are
presented. A model for the H-mode pedestal and for the triggering of ELMs
predicts the height, width, and shape of the H-mode pedestal and the frequency
and width of ELMs. Formation of the pedestal and the L-H transition is the
direct result of ExB flow shear suppression of anomalous transport. The
periodic ELM crashes are triggered by either the ballooning or peeling MHD
instabilities. The BALOO, DCON, and ELITE ideal MHD stability codes are used to
derive a new parametric expression for the peeling-ballooning threshold. The
new dependence for the peeling-ballooning threshold is implemented in the ASTRA
transport code. Results of integrated modeling of DIII-D like discharges are
presented and compared with experimental observations. The results from the
ideal MHD stability codes are compared with results from the resistive MHD
stability code NIMROD.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004,
Nice (France
Secondary instability in drift wave turbulence as a mechanism for zonal flow and avalanche formation
The article reports on recent developments in the theory of secondary instability in drift-ion temperature gradient turbulence. Specifically, the article explores secondary instability as a mechanism for zonal flow generation, transport barrier dynamics and avalanche formation. These in turn are related to the space-time statistics of the drift wave induced flux, the scaling of transport with collisionality and β, and the spatio-temporal evolution of transport barriers
Turbulent Transport Reduction by Zonal Flows: Massively Parallel Simulations
The dynamics of turbulence-driven E x B zonal flows has been systematically studied in fully 3-dimensional gyrokinetic simulations of microturbulence in magnetically confined toroidal plasmas using recently available massively parallel computers. Linear flow damping simulations exhibit an asymptotic residual flow in agreement with recent analytic calculations. Nonlinear global simulations of instabilities driven by temperature gradients in the ion component of the plasma provide key first principles results supporting the physics picture that turbulence-driven fluctuating E x B zonal flows can significantly reduce turbulent transport
- …